CER - Central Repository
Institute of Chemistry, Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Carboxylated single-wall carbon nanotubes decorated with SiO2 coated-Nd2O3 nanoparticles as an electrochemical sensor for L-DOPA detection

Authorized Users Only
2021
Authors
Đurđić, Slađana
Stanković, Vesna
Vlahović, Filip
Ognjanović, Miloš
Kalcher, Kurt
Manojlović, Dragan
Mutić, Jelena
Stanković, Dalibor M.
Article (Published version)
Metadata
Show full item record
Abstract
L-DOPA (L-3,4-dihydroxyphenylalanine), the precursor of dopamine, is widely used in the treatment of Parkinson’s disease, thus determining and monitoring the concentration of L-DOPA is of utmost importance for both medical and scientific purposes. Although many analytical approaches, designed for drug detection and quantification, already exist, there is a constant need for modification of old and tailoring of new, faster, and selective methods. Redox active chemical species, such as L-DOPA, can be measured directly by electrochemical means, whereas electrochemical sensors combine sensitivity and selectivity within a small analytical device. This work demonstrates the development of such electrochemical sensor, based on carboxylated single-wall carbon nanotubes (SWCNT-COOH) decorated with SiO2 coated-Nd2O3 nanoparticles, and further application for the detection of L-DOPA. Developed SWCNT-COOH@Nd2O3-SiO2 sensor shows linear response in the range from 2 µmol L−1 to 52 µmol L−1 analyte c...oncentration, and beside the low detection limit, it is characterized by a fast response time, as well as good life-time, reproducibility and repeatability.

Keywords:
Electrochemical sensing / L-DOPA / Nanostructure / SWCNT-COOH@Nd2O3-SiO2
Source:
Microchemical Journal, 2021, 168, 106416-
Publisher:
  • Elsevier
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200168 (University of Belgrade, Faculty of Chemistry) (RS-200168)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) (RS-200026)
  • CEEPUS network CIII-CZ-0212-13-1920-M-131892

DOI: 10.1016/j.microc.2021.106416

ISSN: 0026-265X

WoS: 000675852600014

Scopus: 2-s2.0-85106605961
[ Google Scholar ]
15
URI
https://cer.ihtm.bg.ac.rs/handle/123456789/4683
Collections
  • Radovi istraživača / Researchers' publications
Institution/Community
IHTM
TY  - JOUR
AU  - Đurđić, Slađana
AU  - Stanković, Vesna
AU  - Vlahović, Filip
AU  - Ognjanović, Miloš
AU  - Kalcher, Kurt
AU  - Manojlović, Dragan
AU  - Mutić, Jelena
AU  - Stanković, Dalibor M.
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4683
AB  - L-DOPA (L-3,4-dihydroxyphenylalanine), the precursor of dopamine, is widely used in the treatment of Parkinson’s disease, thus determining and monitoring the concentration of L-DOPA is of utmost importance for both medical and scientific purposes. Although many analytical approaches, designed for drug detection and quantification, already exist, there is a constant need for modification of old and tailoring of new, faster, and selective methods. Redox active chemical species, such as L-DOPA, can be measured directly by electrochemical means, whereas electrochemical sensors combine sensitivity and selectivity within a small analytical device. This work demonstrates the development of such electrochemical sensor, based on carboxylated single-wall carbon nanotubes (SWCNT-COOH) decorated with SiO2 coated-Nd2O3 nanoparticles, and further application for the detection of L-DOPA. Developed SWCNT-COOH@Nd2O3-SiO2 sensor shows linear response in the range from 2 µmol L−1 to 52 µmol L−1 analyte concentration, and beside the low detection limit, it is characterized by a fast response time, as well as good life-time, reproducibility and repeatability.
PB  - Elsevier
T2  - Microchemical Journal
T1  - Carboxylated single-wall carbon nanotubes decorated with SiO2 coated-Nd2O3 nanoparticles as an electrochemical sensor for L-DOPA detection
VL  - 168
SP  - 106416
DO  - 10.1016/j.microc.2021.106416
ER  - 
@article{
author = "Đurđić, Slađana and Stanković, Vesna and Vlahović, Filip and Ognjanović, Miloš and Kalcher, Kurt and Manojlović, Dragan and Mutić, Jelena and Stanković, Dalibor M.",
year = "2021",
abstract = "L-DOPA (L-3,4-dihydroxyphenylalanine), the precursor of dopamine, is widely used in the treatment of Parkinson’s disease, thus determining and monitoring the concentration of L-DOPA is of utmost importance for both medical and scientific purposes. Although many analytical approaches, designed for drug detection and quantification, already exist, there is a constant need for modification of old and tailoring of new, faster, and selective methods. Redox active chemical species, such as L-DOPA, can be measured directly by electrochemical means, whereas electrochemical sensors combine sensitivity and selectivity within a small analytical device. This work demonstrates the development of such electrochemical sensor, based on carboxylated single-wall carbon nanotubes (SWCNT-COOH) decorated with SiO2 coated-Nd2O3 nanoparticles, and further application for the detection of L-DOPA. Developed SWCNT-COOH@Nd2O3-SiO2 sensor shows linear response in the range from 2 µmol L−1 to 52 µmol L−1 analyte concentration, and beside the low detection limit, it is characterized by a fast response time, as well as good life-time, reproducibility and repeatability.",
publisher = "Elsevier",
journal = "Microchemical Journal",
title = "Carboxylated single-wall carbon nanotubes decorated with SiO2 coated-Nd2O3 nanoparticles as an electrochemical sensor for L-DOPA detection",
volume = "168",
pages = "106416",
doi = "10.1016/j.microc.2021.106416"
}
Đurđić, S., Stanković, V., Vlahović, F., Ognjanović, M., Kalcher, K., Manojlović, D., Mutić, J.,& Stanković, D. M.. (2021). Carboxylated single-wall carbon nanotubes decorated with SiO2 coated-Nd2O3 nanoparticles as an electrochemical sensor for L-DOPA detection. in Microchemical Journal
Elsevier., 168, 106416.
https://doi.org/10.1016/j.microc.2021.106416
Đurđić S, Stanković V, Vlahović F, Ognjanović M, Kalcher K, Manojlović D, Mutić J, Stanković DM. Carboxylated single-wall carbon nanotubes decorated with SiO2 coated-Nd2O3 nanoparticles as an electrochemical sensor for L-DOPA detection. in Microchemical Journal. 2021;168:106416.
doi:10.1016/j.microc.2021.106416 .
Đurđić, Slađana, Stanković, Vesna, Vlahović, Filip, Ognjanović, Miloš, Kalcher, Kurt, Manojlović, Dragan, Mutić, Jelena, Stanković, Dalibor M., "Carboxylated single-wall carbon nanotubes decorated with SiO2 coated-Nd2O3 nanoparticles as an electrochemical sensor for L-DOPA detection" in Microchemical Journal, 168 (2021):106416,
https://doi.org/10.1016/j.microc.2021.106416 . .

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB