CER - Central Repository
Institute of Chemistry, Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Biotransformation of Perrottetin F by Aspergillus niger: New Bioactive Secondary Metabolites

Thumbnail
2021
osnovni rad (737.6Kb)
Authors
Bukvicki, Danka
Novaković, Miroslav
Ilić - Tomić, Tatjana
Nikodinović-Runić, Jasmina
Todorović, Nina
Veljić, Milan
Asakawa, Yoshinori
Article (Published version)
Metadata
Show full item record
Abstract
Biotransformation of bis-bibenzyl perrottetin F (1), isolated from the liverwort Lunularia cruciata by Aspergillus niger, has been investigated. New metabolites (2-4) have been isolated using reversed phase semipreparative HPLC and their structures were established to be 8-hydroxyperrottetin F, C-7-C-8 cleaved product, and perrottetin F 6’-sulfate using 1D and 2D NMR, HR-ESI-MS, IR and UV spectroscopy. The antimicrobial and cytotoxic properties of these compounds were also evaluated. Given the suggested cytotoxic properties of the parent compound, antiproliferative activity against healthy human lung fibroblasts (MRC5) and human lung carcinoma (A549) of three metabolites were evaluated revealing their lower cytotoxic properties in comparison to the starting compound-perrottetin F. The antimicrobial properties of these compounds were also evaluated, with the inhibitory activity against the Pseudomonas aeruginosa PAO1 and Staphylococcus aureus determined between 100 µM and 450 µM. The me...tabolites showed remarkable ability to inhibit synthesis of bacterial quorum-sensing signal molecules such as short chain acyl homoserine lactones (AHLs). Therefore, biotransformation method represents fast and effective tool for obtaining new bioactive structures.

Keywords:
1D and 2D NMR / Aspergillus niger / Biotransformation / Cytotoxic activity / Liverworts / Perrottetin F
Source:
Records of Natural Products, 2021, 15, 4, 281-292
Publisher:
  • Türkiye : ACG Publications
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200178 (University of Belgrade, Faculty of Biology) (RS-200178)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200042 (University of Belgrade, Institute of Molecular Genetics and Genetic Engineering) (RS-200042)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) (RS-200026)
  • The Matsumae International Foundation

DOI: 10.25135/rnp.215.20.09.1812

ISSN: 1307-6167

WoS: 000641301200006

Scopus: 2-s2.0-85105008970
[ Google Scholar ]
5
4
URI
https://cer.ihtm.bg.ac.rs/handle/123456789/4630
Collections
  • Radovi istraživača / Researchers' publications
Institution/Community
IHTM
TY  - JOUR
AU  - Bukvicki, Danka
AU  - Novaković, Miroslav
AU  - Ilić - Tomić, Tatjana
AU  - Nikodinović-Runić, Jasmina
AU  - Todorović, Nina
AU  - Veljić, Milan
AU  - Asakawa, Yoshinori
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4630
AB  - Biotransformation of bis-bibenzyl perrottetin F (1), isolated from the liverwort Lunularia cruciata by Aspergillus niger, has been investigated. New metabolites (2-4) have been isolated using reversed phase semipreparative HPLC and their structures were established to be 8-hydroxyperrottetin F, C-7-C-8 cleaved product, and perrottetin F 6’-sulfate using 1D and 2D NMR, HR-ESI-MS, IR and UV spectroscopy. The antimicrobial and cytotoxic properties of these compounds were also evaluated. Given the suggested cytotoxic properties of the parent compound, antiproliferative activity against healthy human lung fibroblasts (MRC5) and human lung carcinoma (A549) of three metabolites were evaluated revealing their lower cytotoxic properties in comparison to the starting compound-perrottetin F. The antimicrobial properties of these compounds were also evaluated, with the inhibitory activity against the Pseudomonas aeruginosa PAO1 and Staphylococcus aureus determined between 100 µM and 450 µM. The metabolites showed remarkable ability to inhibit synthesis of bacterial quorum-sensing signal molecules such as short chain acyl homoserine lactones (AHLs). Therefore, biotransformation method represents fast and effective tool for obtaining new bioactive structures.
PB  - Türkiye : ACG Publications
T2  - Records of Natural Products
T1  - Biotransformation of Perrottetin F by Aspergillus niger: New Bioactive Secondary Metabolites
VL  - 15
IS  - 4
SP  - 281
EP  - 292
DO  - 10.25135/rnp.215.20.09.1812
ER  - 
@article{
author = "Bukvicki, Danka and Novaković, Miroslav and Ilić - Tomić, Tatjana and Nikodinović-Runić, Jasmina and Todorović, Nina and Veljić, Milan and Asakawa, Yoshinori",
year = "2021",
abstract = "Biotransformation of bis-bibenzyl perrottetin F (1), isolated from the liverwort Lunularia cruciata by Aspergillus niger, has been investigated. New metabolites (2-4) have been isolated using reversed phase semipreparative HPLC and their structures were established to be 8-hydroxyperrottetin F, C-7-C-8 cleaved product, and perrottetin F 6’-sulfate using 1D and 2D NMR, HR-ESI-MS, IR and UV spectroscopy. The antimicrobial and cytotoxic properties of these compounds were also evaluated. Given the suggested cytotoxic properties of the parent compound, antiproliferative activity against healthy human lung fibroblasts (MRC5) and human lung carcinoma (A549) of three metabolites were evaluated revealing their lower cytotoxic properties in comparison to the starting compound-perrottetin F. The antimicrobial properties of these compounds were also evaluated, with the inhibitory activity against the Pseudomonas aeruginosa PAO1 and Staphylococcus aureus determined between 100 µM and 450 µM. The metabolites showed remarkable ability to inhibit synthesis of bacterial quorum-sensing signal molecules such as short chain acyl homoserine lactones (AHLs). Therefore, biotransformation method represents fast and effective tool for obtaining new bioactive structures.",
publisher = "Türkiye : ACG Publications",
journal = "Records of Natural Products",
title = "Biotransformation of Perrottetin F by Aspergillus niger: New Bioactive Secondary Metabolites",
volume = "15",
number = "4",
pages = "281-292",
doi = "10.25135/rnp.215.20.09.1812"
}
Bukvicki, D., Novaković, M., Ilić - Tomić, T., Nikodinović-Runić, J., Todorović, N., Veljić, M.,& Asakawa, Y.. (2021). Biotransformation of Perrottetin F by Aspergillus niger: New Bioactive Secondary Metabolites. in Records of Natural Products
Türkiye : ACG Publications., 15(4), 281-292.
https://doi.org/10.25135/rnp.215.20.09.1812
Bukvicki D, Novaković M, Ilić - Tomić T, Nikodinović-Runić J, Todorović N, Veljić M, Asakawa Y. Biotransformation of Perrottetin F by Aspergillus niger: New Bioactive Secondary Metabolites. in Records of Natural Products. 2021;15(4):281-292.
doi:10.25135/rnp.215.20.09.1812 .
Bukvicki, Danka, Novaković, Miroslav, Ilić - Tomić, Tatjana, Nikodinović-Runić, Jasmina, Todorović, Nina, Veljić, Milan, Asakawa, Yoshinori, "Biotransformation of Perrottetin F by Aspergillus niger: New Bioactive Secondary Metabolites" in Records of Natural Products, 15, no. 4 (2021):281-292,
https://doi.org/10.25135/rnp.215.20.09.1812 . .

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB