CER - Central Repository
Institute of Chemistry, Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Laccase Polyphenolic Biosensor Supported on MnO2@GNP Decorated SPCE: Preparation, Characterization, and Analytical Application

Thumbnail
2021
Acc4523Djurdjic+et+al_2021_J._Electrochem._Soc._10.1149_1945-7111_abeaf2.pdf (1.342Mb)
Authors
Đurđić, Slađana
Stanković, Vesna
Vlahović, Filip
Ognjanović, Miloš
Kalcher, Kurt
Ćirković Veličković, T.
Mutić, Jelena
Stanković, Dalibor M.
Article (Accepted Version)
Metadata
Show full item record
Abstract
Based on graphene nanoplatelets capability to build block composites, as well as well-known electrochemical characteristic of the manganese oxide materials, in the present research, a nanocomposite, formed from graphene nanoplatelets (GNP) and manganese(IV)-oxide (MnO2) nanoparticles, has been proposed as a novel and convenient support for enzyme immobilization. Performance of screen printed carbon electrodes (SPCEs) was significantly improved after their modification with GNP@MnO2 (SPCE/GNP@MnO2). The polyphenolic index biosensor was prepared by applying the drop coating technique using laccase and Nafion®. Developed biosensor shows a fast and reliable amperometric response toward caffeic acid, as a model compound, at operating potential of +0.40 V (vs Ag/AgCl), with a wide linear range and detection limit of 1.9 μmol l-1. Developed procedure was successfully applied for the determination of polyphenolic indexes in wine samples. Recovery tests indicate excellent accuracy and precision... of the method, concluding that the biosensor can offer a fast, accurate, reliable and precise determination of the polyphenolic index. More importantly, our results suggest a great potential for the application in real samples. © 2021 The Electrochemical Society ("ECS"). Published on behalf of ECS by IOP Publishing Limited.

Keywords:
Biosensors / Electrodes / Enzyme immobilization / Graphene / Graphene Nanoplatelets / Accuracy and precision / Amperometric response / Analytical applications / Detection limits / Electrochemical characteristics / Precise determinations / Screen printed carbon electrode (SPCEs) / Wide-linear range / Manganese oxide
Source:
Journal of Electrochemical Society, 2021, 168, 3, 037510-
Publisher:
  • The Electrochemical Society ("ECS").
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200168 (University of Belgrade, Faculty of Chemistry) (RS-200168)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) (RS-200026)
  • CEEPUS network CIII-CZ-0212-13-1920-M-131892 (Education of Modern Analytical and Bioanalytical Methods)
  • Eureka project call, E! 13303 MED-BIO-TEST
Note:
  • This is the peer-reviewed version of the article: Đurđić, S., Stanković, V., Vlahović, F., Ognjanović, M., Kalcher, K., Ćirković Veličković, T., Mutić, J. J.,& Stanković, D. M. (2021). Laccase Polyphenolic Biosensor Supported on MnO2@GNP Decorated SPCE: Preparation, Characterization, and Analytical Application. Journal of Electrochemical Society, 168(3), 037510. https://doi.org/10.1149/1945-7111/abeaf2
  • Published version: https://cer.ihtm.bg.ac.rs/handle/123456789/4523
Related info:
  • Version of
    https://doi.org/10.1149/1945-7111/abeaf2
  • Version of
    https://cer.ihtm.bg.ac.rs/handle/123456789/4523

DOI: 10.1149/1945-7111/abeaf2

ISSN: 0013-4651

WoS: 000629756800001

Scopus: 2-s2.0-85103235625
[ Google Scholar ]
7
2
URI
https://cer.ihtm.bg.ac.rs/handle/123456789/4578
Collections
  • Radovi istraživača / Researchers' publications
Institution/Community
IHTM
TY  - JOUR
AU  - Đurđić, Slađana
AU  - Stanković, Vesna
AU  - Vlahović, Filip
AU  - Ognjanović, Miloš
AU  - Kalcher, Kurt
AU  - Ćirković Veličković, T.
AU  - Mutić, Jelena
AU  - Stanković, Dalibor M.
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4578
AB  - Based on graphene nanoplatelets capability to build block composites, as well as well-known electrochemical characteristic of the manganese oxide materials, in the present research, a nanocomposite, formed from graphene nanoplatelets (GNP) and manganese(IV)-oxide (MnO2) nanoparticles, has been proposed as a novel and convenient support for enzyme immobilization. Performance of screen printed carbon electrodes (SPCEs) was significantly improved after their modification with GNP@MnO2 (SPCE/GNP@MnO2). The polyphenolic index biosensor was prepared by applying the drop coating technique using laccase and Nafion®. Developed biosensor shows a fast and reliable amperometric response toward caffeic acid, as a model compound, at operating potential of +0.40 V (vs Ag/AgCl), with a wide linear range and detection limit of 1.9 μmol l-1. Developed procedure was successfully applied for the determination of polyphenolic indexes in wine samples. Recovery tests indicate excellent accuracy and precision of the method, concluding that the biosensor can offer a fast, accurate, reliable and precise determination of the polyphenolic index. More importantly, our results suggest a great potential for the application in real samples. © 2021 The Electrochemical Society ("ECS"). Published on behalf of ECS by IOP Publishing Limited.
PB  - The Electrochemical Society ("ECS").
T2  - Journal of Electrochemical Society
T1  - Laccase Polyphenolic Biosensor Supported on MnO2@GNP Decorated SPCE: Preparation, Characterization, and Analytical Application
VL  - 168
IS  - 3
SP  - 037510
DO  - 10.1149/1945-7111/abeaf2
ER  - 
@article{
author = "Đurđić, Slađana and Stanković, Vesna and Vlahović, Filip and Ognjanović, Miloš and Kalcher, Kurt and Ćirković Veličković, T. and Mutić, Jelena and Stanković, Dalibor M.",
year = "2021",
abstract = "Based on graphene nanoplatelets capability to build block composites, as well as well-known electrochemical characteristic of the manganese oxide materials, in the present research, a nanocomposite, formed from graphene nanoplatelets (GNP) and manganese(IV)-oxide (MnO2) nanoparticles, has been proposed as a novel and convenient support for enzyme immobilization. Performance of screen printed carbon electrodes (SPCEs) was significantly improved after their modification with GNP@MnO2 (SPCE/GNP@MnO2). The polyphenolic index biosensor was prepared by applying the drop coating technique using laccase and Nafion®. Developed biosensor shows a fast and reliable amperometric response toward caffeic acid, as a model compound, at operating potential of +0.40 V (vs Ag/AgCl), with a wide linear range and detection limit of 1.9 μmol l-1. Developed procedure was successfully applied for the determination of polyphenolic indexes in wine samples. Recovery tests indicate excellent accuracy and precision of the method, concluding that the biosensor can offer a fast, accurate, reliable and precise determination of the polyphenolic index. More importantly, our results suggest a great potential for the application in real samples. © 2021 The Electrochemical Society ("ECS"). Published on behalf of ECS by IOP Publishing Limited.",
publisher = "The Electrochemical Society ("ECS").",
journal = "Journal of Electrochemical Society",
title = "Laccase Polyphenolic Biosensor Supported on MnO2@GNP Decorated SPCE: Preparation, Characterization, and Analytical Application",
volume = "168",
number = "3",
pages = "037510",
doi = "10.1149/1945-7111/abeaf2"
}
Đurđić, S., Stanković, V., Vlahović, F., Ognjanović, M., Kalcher, K., Ćirković Veličković, T., Mutić, J.,& Stanković, D. M.. (2021). Laccase Polyphenolic Biosensor Supported on MnO2@GNP Decorated SPCE: Preparation, Characterization, and Analytical Application. in Journal of Electrochemical Society
The Electrochemical Society ("ECS").., 168(3), 037510.
https://doi.org/10.1149/1945-7111/abeaf2
Đurđić S, Stanković V, Vlahović F, Ognjanović M, Kalcher K, Ćirković Veličković T, Mutić J, Stanković DM. Laccase Polyphenolic Biosensor Supported on MnO2@GNP Decorated SPCE: Preparation, Characterization, and Analytical Application. in Journal of Electrochemical Society. 2021;168(3):037510.
doi:10.1149/1945-7111/abeaf2 .
Đurđić, Slađana, Stanković, Vesna, Vlahović, Filip, Ognjanović, Miloš, Kalcher, Kurt, Ćirković Veličković, T., Mutić, Jelena, Stanković, Dalibor M., "Laccase Polyphenolic Biosensor Supported on MnO2@GNP Decorated SPCE: Preparation, Characterization, and Analytical Application" in Journal of Electrochemical Society, 168, no. 3 (2021):037510,
https://doi.org/10.1149/1945-7111/abeaf2 . .

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB