CER - Central Repository
Institute of Chemistry, Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multiferroic Heterostructure BaTiO3/ε-Fe2O3 Composite Obtained by in situ Reaction

Thumbnail
2021
scisint-vol53-is1-01.pdf (718.6Kb)
Authors
Filipović, Suzana
Obradović, Nina
Anđelković, Ljubica
Olćan, Dragan
Petrović, Jovana
Mirković, Miljana
Pavlović, Vladimir
Jeremić, Dejan
Vlahović, Branislav
Đorđević, Antonije
Article (Published version)
,
Authors
Metadata
Show full item record
Abstract
Solid-state reaction between BaTiO3 and Fe2O3 was used to produce a multiferroic heterostructure composite. Commercial BaTiO3 and Fe(NO3)3•9H2O were suspended in ethanol for 30 minutes in an ultrasound bath. The prepared mixture was thermally processed at 300 oC for 6 h. Sintering at 1300 oC for 1 h resulted in a mixture of different phases, BaTiO3, BaFe12O19 and Ba12Ti28Fe15O84, which were confirmed by x-ray powder diffraction. A dense microstructure with a small volume fraction of closed porosity was indicated by the scanning electron microscopy, while a homogeneous distribution of Fe ions over BaTiO3 phase was visible from energy dispersive spectroscopy mapping. Doping of BaTiO3 with Fe2O3 resulted in formation of magnetic hexaferrite phases, as confirmed by dielectric measurements that showed a broadened maximum of the permittivity measured as a function of temperature.
Keywords:
BaTiO3 / Composite / Multiferroic / Solid-State Reaction / Sintering
Source:
Science of Sintering, 2021, 53, 1-8
Publisher:
  • Belgrade : International Institute for the Science of Sintering
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200175 (Institute of Technical Sciences of SASA, Belgrade) (RS-200175)
  • Project F133 funded by the Serbian Academy of Sciences and Arts.
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) (RS-200026)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200288 (Innovation Center of the Faculty of Chemistry) (RS-200288)
  • NSF PREM award DMR 11523617

DOI: 10.2298/SOS2101001F

ISSN: 1820-7413; 0350-820X

WoS: 000655069100001

[ Google Scholar ]
1
URI
https://cer.ihtm.bg.ac.rs/handle/123456789/4356
Collections
  • Radovi istraživača / Researchers' publications
Institution/Community
IHTM
TY  - JOUR
AU  - Filipović, Suzana
AU  - Obradović, Nina
AU  - Anđelković, Ljubica
AU  - Olćan, Dragan
AU  - Petrović, Jovana
AU  - Mirković, Miljana
AU  - Pavlović, Vladimir
AU  - Jeremić, Dejan
AU  - Vlahović, Branislav
AU  - Đorđević, Antonije
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4356
AB  - Solid-state reaction between BaTiO3 and Fe2O3 was used to produce a multiferroic heterostructure composite. Commercial BaTiO3 and Fe(NO3)3•9H2O were suspended in ethanol for 30 minutes in an ultrasound bath. The prepared mixture was thermally processed at 300 oC for 6 h. Sintering at 1300 oC for 1 h resulted in a mixture of different phases, BaTiO3, BaFe12O19 and Ba12Ti28Fe15O84, which were confirmed by x-ray powder diffraction. A dense microstructure with a small volume fraction of closed porosity was indicated by the scanning electron microscopy, while a homogeneous distribution of Fe ions over BaTiO3 phase was visible from energy dispersive spectroscopy mapping. Doping of BaTiO3 with Fe2O3 resulted in formation of magnetic hexaferrite phases, as confirmed by dielectric measurements that showed a broadened maximum of the permittivity measured as a function of temperature.
PB  - Belgrade : International Institute for the Science of Sintering
T2  - Science of Sintering
T1  - Multiferroic Heterostructure BaTiO3/ε-Fe2O3 Composite Obtained by in situ Reaction
VL  - 53
SP  - 1
EP  - 8
DO  - 10.2298/SOS2101001F
ER  - 
@article{
author = "Filipović, Suzana and Obradović, Nina and Anđelković, Ljubica and Olćan, Dragan and Petrović, Jovana and Mirković, Miljana and Pavlović, Vladimir and Jeremić, Dejan and Vlahović, Branislav and Đorđević, Antonije",
year = "2021",
abstract = "Solid-state reaction between BaTiO3 and Fe2O3 was used to produce a multiferroic heterostructure composite. Commercial BaTiO3 and Fe(NO3)3•9H2O were suspended in ethanol for 30 minutes in an ultrasound bath. The prepared mixture was thermally processed at 300 oC for 6 h. Sintering at 1300 oC for 1 h resulted in a mixture of different phases, BaTiO3, BaFe12O19 and Ba12Ti28Fe15O84, which were confirmed by x-ray powder diffraction. A dense microstructure with a small volume fraction of closed porosity was indicated by the scanning electron microscopy, while a homogeneous distribution of Fe ions over BaTiO3 phase was visible from energy dispersive spectroscopy mapping. Doping of BaTiO3 with Fe2O3 resulted in formation of magnetic hexaferrite phases, as confirmed by dielectric measurements that showed a broadened maximum of the permittivity measured as a function of temperature.",
publisher = "Belgrade : International Institute for the Science of Sintering",
journal = "Science of Sintering",
title = "Multiferroic Heterostructure BaTiO3/ε-Fe2O3 Composite Obtained by in situ Reaction",
volume = "53",
pages = "1-8",
doi = "10.2298/SOS2101001F"
}
Filipović, S., Obradović, N., Anđelković, L., Olćan, D., Petrović, J., Mirković, M., Pavlović, V., Jeremić, D., Vlahović, B.,& Đorđević, A.. (2021). Multiferroic Heterostructure BaTiO3/ε-Fe2O3 Composite Obtained by in situ Reaction. in Science of Sintering
Belgrade : International Institute for the Science of Sintering., 53, 1-8.
https://doi.org/10.2298/SOS2101001F
Filipović S, Obradović N, Anđelković L, Olćan D, Petrović J, Mirković M, Pavlović V, Jeremić D, Vlahović B, Đorđević A. Multiferroic Heterostructure BaTiO3/ε-Fe2O3 Composite Obtained by in situ Reaction. in Science of Sintering. 2021;53:1-8.
doi:10.2298/SOS2101001F .
Filipović, Suzana, Obradović, Nina, Anđelković, Ljubica, Olćan, Dragan, Petrović, Jovana, Mirković, Miljana, Pavlović, Vladimir, Jeremić, Dejan, Vlahović, Branislav, Đorđević, Antonije, "Multiferroic Heterostructure BaTiO3/ε-Fe2O3 Composite Obtained by in situ Reaction" in Science of Sintering, 53 (2021):1-8,
https://doi.org/10.2298/SOS2101001F . .

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB