CER - Central Repository
Institute of Chemistry, Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Shape evolution of carbon supported Pt nanoparticles: From synthesis to application

Thumbnail
2016
1855.acc.pdf (1.211Mb)
Authors
Krstajić Pajić, Mila N.
Stevanović, Sanja
Radmilović, Vuk V.
Gavrilović-Wohlmuther, Aleksandra
Radmilović, Velimir R.
Gojković, Snežana Lj.
Jovanović, Vladislava M.
Article (Accepted Version)
Metadata
Show full item record
Abstract
In this research, a water-in-oil microemulsion method with HCl as a capping agent was applied to synthesize carbon supported Pt catalysts. Varying the concentration of HCl caused changes in the shape of obtained nanoparticles, i.e. preferential growth of certain facets. Addition of catalyst support in the synthesis process facilitated the cleaning procedures necessary to remove the surfactant residues. Prepared catalyst powders were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). XRD analysis indicated the influence of HCl addition on the crystallite size and crystal habit. TEM revealed that addition of higher amounts of the capping agent led to the formation of a noticable amount of particles with concave cubic or branched-like structures. Influence of the catalyst particles shape on its electrochemical properties was tested in the oxidations of COads, ammonia and formic acid. The latter one was examined in terms of both activity and stability of a...s prepared and oxide-annealed (electrochemically treated) catalysts. The results clearly demonstrate that even small changes in the nanoparticle surface structure give rise to distinct modifications in their properties. Concave cubic particles, in comparison to other catalysts, show improved catalytic properties and the contribution of their preferentially oriented {100} facets is electrochemically detectable.

Keywords:
Cuboidal Pt particles / Formic acid oxidation / CO oxidation
Source:
Applied Catalysis B-Environmental, 2016, 196, 174-184
Publisher:
  • Elsevier
Funding / projects:
  • New approach in designing materials for energy conversion and energy storage systems (RS-172060)
  • Serbian Academy of Sciences and Arts - F-141
Note:
  • This is the peer-reviewed version of the article: Krstajić Pajić, M. N., Stevanović, S., Radmilović, V. V., Gavrilović-Wohlmuther, A., Radmilović, V. R., Gojković, S. Lj.,& Jovanović, V. M. (2016). Shape evolution of carbon supported Pt nanoparticles: From synthesis to application. Applied Catalysis B-Environmental, Elsevier Science Bv, Amsterdam., 196, 174-184. https://doi.org/10.1016/j.apcatb.2016.05.033
  • The published version: https://cer.ihtm.bg.ac.rs/handle/123456789/1855

DOI: 10.1016/j.apcatb.2016.05.033

ISSN: 0926-3373

WoS: 000380414500017

Scopus: 2-s2.0-84970971210
[ Google Scholar ]
15
14
URI
https://cer.ihtm.bg.ac.rs/handle/123456789/4294
Collections
  • Radovi istraživača / Researchers' publications
Institution/Community
IHTM
TY  - JOUR
AU  - Krstajić Pajić, Mila N.
AU  - Stevanović, Sanja
AU  - Radmilović, Vuk V.
AU  - Gavrilović-Wohlmuther, Aleksandra
AU  - Radmilović, Velimir R.
AU  - Gojković, Snežana Lj.
AU  - Jovanović, Vladislava M.
PY  - 2016
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4294
AB  - In this research, a water-in-oil microemulsion method with HCl as a capping agent was applied to synthesize carbon supported Pt catalysts. Varying the concentration of HCl caused changes in the shape of obtained nanoparticles, i.e. preferential growth of certain facets. Addition of catalyst support in the synthesis process facilitated the cleaning procedures necessary to remove the surfactant residues. Prepared catalyst powders were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). XRD analysis indicated the influence of HCl addition on the crystallite size and crystal habit. TEM revealed that addition of higher amounts of the capping agent led to the formation of a noticable amount of particles with concave cubic or branched-like structures. Influence of the catalyst particles shape on its electrochemical properties was tested in the oxidations of COads, ammonia and formic acid. The latter one was examined in terms of both activity and stability of as prepared and oxide-annealed (electrochemically treated) catalysts. The results clearly demonstrate that even small changes in the nanoparticle surface structure give rise to distinct modifications in their properties. Concave cubic particles, in comparison to other catalysts, show improved catalytic properties and the contribution of their preferentially oriented {100} facets is electrochemically detectable.
PB  - Elsevier
T2  - Applied Catalysis B-Environmental
T1  - Shape evolution of carbon supported Pt nanoparticles: From synthesis to application
VL  - 196
SP  - 174
EP  - 184
DO  - 10.1016/j.apcatb.2016.05.033
ER  - 
@article{
author = "Krstajić Pajić, Mila N. and Stevanović, Sanja and Radmilović, Vuk V. and Gavrilović-Wohlmuther, Aleksandra and Radmilović, Velimir R. and Gojković, Snežana Lj. and Jovanović, Vladislava M.",
year = "2016",
abstract = "In this research, a water-in-oil microemulsion method with HCl as a capping agent was applied to synthesize carbon supported Pt catalysts. Varying the concentration of HCl caused changes in the shape of obtained nanoparticles, i.e. preferential growth of certain facets. Addition of catalyst support in the synthesis process facilitated the cleaning procedures necessary to remove the surfactant residues. Prepared catalyst powders were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). XRD analysis indicated the influence of HCl addition on the crystallite size and crystal habit. TEM revealed that addition of higher amounts of the capping agent led to the formation of a noticable amount of particles with concave cubic or branched-like structures. Influence of the catalyst particles shape on its electrochemical properties was tested in the oxidations of COads, ammonia and formic acid. The latter one was examined in terms of both activity and stability of as prepared and oxide-annealed (electrochemically treated) catalysts. The results clearly demonstrate that even small changes in the nanoparticle surface structure give rise to distinct modifications in their properties. Concave cubic particles, in comparison to other catalysts, show improved catalytic properties and the contribution of their preferentially oriented {100} facets is electrochemically detectable.",
publisher = "Elsevier",
journal = "Applied Catalysis B-Environmental",
title = "Shape evolution of carbon supported Pt nanoparticles: From synthesis to application",
volume = "196",
pages = "174-184",
doi = "10.1016/j.apcatb.2016.05.033"
}
Krstajić Pajić, M. N., Stevanović, S., Radmilović, V. V., Gavrilović-Wohlmuther, A., Radmilović, V. R., Gojković, S. Lj.,& Jovanović, V. M.. (2016). Shape evolution of carbon supported Pt nanoparticles: From synthesis to application. in Applied Catalysis B-Environmental
Elsevier., 196, 174-184.
https://doi.org/10.1016/j.apcatb.2016.05.033
Krstajić Pajić MN, Stevanović S, Radmilović VV, Gavrilović-Wohlmuther A, Radmilović VR, Gojković SL, Jovanović VM. Shape evolution of carbon supported Pt nanoparticles: From synthesis to application. in Applied Catalysis B-Environmental. 2016;196:174-184.
doi:10.1016/j.apcatb.2016.05.033 .
Krstajić Pajić, Mila N., Stevanović, Sanja, Radmilović, Vuk V., Gavrilović-Wohlmuther, Aleksandra, Radmilović, Velimir R., Gojković, Snežana Lj., Jovanović, Vladislava M., "Shape evolution of carbon supported Pt nanoparticles: From synthesis to application" in Applied Catalysis B-Environmental, 196 (2016):174-184,
https://doi.org/10.1016/j.apcatb.2016.05.033 . .

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB