CER - Central Repository
Institute of Chemistry, Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bio-membrane based on modified cellulose, lignin, and tannic acid for cation and oxyanion removal: Experimental and theoretical study

Authorized Users Only
2021
Authors
Perendija, Jovana
Veličković, Zlate S.
Cvijetić, Ilija
Lević, Steva
Marinković, Aleksandar D.
Milošević, Milena
Onjia, Antonije
Article (Published version)
Metadata
Show full item record
Abstract
Two optimized methods, based on epoxy-amino reactivity of the Cellulose fibres (Cell) modified with diethylenetriamine (Cell‒DETA), (3-Glycidyloxypropyl)trimethoxysilane (Cell-Glymo), Lignin modified with epichlorohydrine (EL) and Tannic acid (TA), as an additional crosslinker, were developed for the production of the bio-renewable Cell-EL and Cell-EL-TA membranes. The influences of pH, contact time, adsorbent dose, and temperature on adsorption performances were studied by batch adsorption tests. The calculated capacities: 53.9, 99.9, 97.8 and 63.5, 115.8, 127.5 mg g−1 for Ni2+, Pb2+, Cr(VI) using Cell-EL and Cell-EL-TA, respectively, were obtained from Langmuir model fitting at 25 °C. The thermodynamic parameters indicated spontaneous and low endothermic processes. The results of the kinetic study, i.e. pseudo-second-order (PSO) and Weber-Morris (W-M), suggest an intra-particle diffusion as a rate-limiting step. The semi-empirical quantum chemical calculations aided the analysis of t...he non-specific and specific adsorbent/adsorbate interactions and their contribution to the overall bonding mechanism. Membrane utility was confirmed by performing a bed column study. In general, three main environmental issues of the present study, biodegradability of the used membrane, desorption efficiency, and development of the technology for the effective effluent water treatment and safe disposal of by-products highly conform to the demand of integrated environmental management system applicability in practice.

Keywords:
Batch and column study / Cellulose membrane / Semi-empirical calculations / Sustainable development
Source:
Process Safety and Environmental Protection, 2021, 147, 609-625
Publisher:
  • Institution of Chemical Engineers
  • Elsevier
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) (RS-200026)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200135 (University of Belgrade, Faculty of Technology and Metallurgy) (RS-200135)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200288 (Innovation Center of the Faculty of Chemistry) (RS-200288)

DOI: 10.1016/j.psep.2020.12.027

ISSN: 0957-5820; 1744-3598

WoS: 000623811400050

Scopus: 2-s2.0-85098779116
[ Google Scholar ]
9
3
URI
https://cer.ihtm.bg.ac.rs/handle/123456789/4229
Collections
  • Radovi istraživača / Researchers' publications
Institution/Community
IHTM
TY  - JOUR
AU  - Perendija, Jovana
AU  - Veličković, Zlate S.
AU  - Cvijetić, Ilija
AU  - Lević, Steva
AU  - Marinković, Aleksandar D.
AU  - Milošević, Milena
AU  - Onjia, Antonije
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4229
AB  - Two optimized methods, based on epoxy-amino reactivity of the Cellulose fibres (Cell) modified with diethylenetriamine (Cell‒DETA), (3-Glycidyloxypropyl)trimethoxysilane (Cell-Glymo), Lignin modified with epichlorohydrine (EL) and Tannic acid (TA), as an additional crosslinker, were developed for the production of the bio-renewable Cell-EL and Cell-EL-TA membranes. The influences of pH, contact time, adsorbent dose, and temperature on adsorption performances were studied by batch adsorption tests. The calculated capacities: 53.9, 99.9, 97.8 and 63.5, 115.8, 127.5 mg g−1 for Ni2+, Pb2+, Cr(VI) using Cell-EL and Cell-EL-TA, respectively, were obtained from Langmuir model fitting at 25 °C. The thermodynamic parameters indicated spontaneous and low endothermic processes. The results of the kinetic study, i.e. pseudo-second-order (PSO) and Weber-Morris (W-M), suggest an intra-particle diffusion as a rate-limiting step. The semi-empirical quantum chemical calculations aided the analysis of the non-specific and specific adsorbent/adsorbate interactions and their contribution to the overall bonding mechanism. Membrane utility was confirmed by performing a bed column study. In general, three main environmental issues of the present study, biodegradability of the used membrane, desorption efficiency, and development of the technology for the effective effluent water treatment and safe disposal of by-products highly conform to the demand of integrated environmental management system applicability in practice.
PB  - Institution of Chemical Engineers
PB  - Elsevier
T2  - Process Safety and Environmental Protection
T1  - Bio-membrane based on modified cellulose, lignin, and tannic acid for cation and oxyanion removal: Experimental and theoretical study
VL  - 147
SP  - 609
EP  - 625
DO  - 10.1016/j.psep.2020.12.027
ER  - 
@article{
author = "Perendija, Jovana and Veličković, Zlate S. and Cvijetić, Ilija and Lević, Steva and Marinković, Aleksandar D. and Milošević, Milena and Onjia, Antonije",
year = "2021",
abstract = "Two optimized methods, based on epoxy-amino reactivity of the Cellulose fibres (Cell) modified with diethylenetriamine (Cell‒DETA), (3-Glycidyloxypropyl)trimethoxysilane (Cell-Glymo), Lignin modified with epichlorohydrine (EL) and Tannic acid (TA), as an additional crosslinker, were developed for the production of the bio-renewable Cell-EL and Cell-EL-TA membranes. The influences of pH, contact time, adsorbent dose, and temperature on adsorption performances were studied by batch adsorption tests. The calculated capacities: 53.9, 99.9, 97.8 and 63.5, 115.8, 127.5 mg g−1 for Ni2+, Pb2+, Cr(VI) using Cell-EL and Cell-EL-TA, respectively, were obtained from Langmuir model fitting at 25 °C. The thermodynamic parameters indicated spontaneous and low endothermic processes. The results of the kinetic study, i.e. pseudo-second-order (PSO) and Weber-Morris (W-M), suggest an intra-particle diffusion as a rate-limiting step. The semi-empirical quantum chemical calculations aided the analysis of the non-specific and specific adsorbent/adsorbate interactions and their contribution to the overall bonding mechanism. Membrane utility was confirmed by performing a bed column study. In general, three main environmental issues of the present study, biodegradability of the used membrane, desorption efficiency, and development of the technology for the effective effluent water treatment and safe disposal of by-products highly conform to the demand of integrated environmental management system applicability in practice.",
publisher = "Institution of Chemical Engineers, Elsevier",
journal = "Process Safety and Environmental Protection",
title = "Bio-membrane based on modified cellulose, lignin, and tannic acid for cation and oxyanion removal: Experimental and theoretical study",
volume = "147",
pages = "609-625",
doi = "10.1016/j.psep.2020.12.027"
}
Perendija, J., Veličković, Z. S., Cvijetić, I., Lević, S., Marinković, A. D., Milošević, M.,& Onjia, A.. (2021). Bio-membrane based on modified cellulose, lignin, and tannic acid for cation and oxyanion removal: Experimental and theoretical study. in Process Safety and Environmental Protection
Institution of Chemical Engineers., 147, 609-625.
https://doi.org/10.1016/j.psep.2020.12.027
Perendija J, Veličković ZS, Cvijetić I, Lević S, Marinković AD, Milošević M, Onjia A. Bio-membrane based on modified cellulose, lignin, and tannic acid for cation and oxyanion removal: Experimental and theoretical study. in Process Safety and Environmental Protection. 2021;147:609-625.
doi:10.1016/j.psep.2020.12.027 .
Perendija, Jovana, Veličković, Zlate S., Cvijetić, Ilija, Lević, Steva, Marinković, Aleksandar D., Milošević, Milena, Onjia, Antonije, "Bio-membrane based on modified cellulose, lignin, and tannic acid for cation and oxyanion removal: Experimental and theoretical study" in Process Safety and Environmental Protection, 147 (2021):609-625,
https://doi.org/10.1016/j.psep.2020.12.027 . .

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB