Field Effect and Local Gating in Nitrogen‐Terminated Nanopores (NtNP) and Nanogaps (NtNG) in Graphene
Samo za registrovane korisnike
2021
Autori
Djurišić, Ivana
Dražić, Miloš S.

Tomović, Aleksandar Ž.

Spasenović, Marko

Šljivančanin, Željko

Jovanović, Vladimir P.

Zikić, Radomir

Članak u časopisu (Objavljena verzija)

Wiley
Metapodaci
Prikaz svih podataka o dokumentuApstrakt
Functionalization of electrodes is a wide‐used strategy in various applications ranging from single‐molecule sensing and protein sequencing, to ion trapping, to desalination. We demonstrate, employing non‐equilibrium Green′s function formalism combined with density functional theory, that single‐species (N, H, S, Cl, F) termination of graphene nanogap electrodes results in a strong in‐gap electrostatic field, induced by species‐dependent dipoles formed at the electrode ends. Consequently, the field increases or decreases electronic transport through a molecule (benzene) placed in the nanogap by shifting molecular levels by almost 2 eV in respect to the electrode Fermi level via a field effect akin to the one used for field‐effect transistors. We also observed the local gating in graphene nanopores terminated with different single‐species atoms. Nitrogen‐terminated nanogaps (NtNGs) and nanopores (NtNPs) show the strongest effect. The in‐gap potential can be transformed from a plateau‐li...ke to a saddle‐like shape by tailoring NtNG and NtNP size and termination type. In particular, the saddle‐like potential is applicable in single‐ion trapping and desalination devices.
Ključne reči:
Graphene / Nanogaps / Non‐equilibrium Green′s functions / Nitrogen‐terminated nanogaps (NtNGs) / Nitrogen‐terminated nanopores (NtNPs)Izvor:
ChemPhysChem, 2021, 22, 3, 336-341Izdavač:
- Wiley
Finansiranje / projekti:
- Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije, Ugovor br. 200053 (Univerzitet u Beogradu, Institut za multidisciplinarna istraživanja) (RS-200053)
- Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije, Ugovor br. 200017 (Univerzitet u Beogradu, Institut za nuklearne nauke Vinča, Beograd-Vinča) (RS-200017)
- Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije, Ugovor br. 200026 (Univerzitet u Beogradu, Institut za hemiju, tehnologiju i metalurgiju - IHTM) (RS-200026)
- Swiss National Science Foundation (SCOPES project No. 152406)
- NanoTools for Ultra Fast DNA Sequencing (EU-214840)
Napomena:
- The accepted, peer-reviewed version: https://cer.ihtm.bg.ac.rs/handle/123456789/4048
- The submitted, pre-peer reviewed version: https://cer.ihtm.bg.ac.rs/handle/123456789/4049
DOI: 10.1002/cphc.202000771
ISSN: 1439-4235; 1439-7641
WoS: 000599079400001
Scopus: 2-s2.0-85097555438
Institucija/grupa
IHTMTY - JOUR AU - Djurišić, Ivana AU - Dražić, Miloš S. AU - Tomović, Aleksandar Ž. AU - Spasenović, Marko AU - Šljivančanin, Željko AU - Jovanović, Vladimir P. AU - Zikić, Radomir PY - 2021 UR - https://cer.ihtm.bg.ac.rs/handle/123456789/4044 AB - Functionalization of electrodes is a wide‐used strategy in various applications ranging from single‐molecule sensing and protein sequencing, to ion trapping, to desalination. We demonstrate, employing non‐equilibrium Green′s function formalism combined with density functional theory, that single‐species (N, H, S, Cl, F) termination of graphene nanogap electrodes results in a strong in‐gap electrostatic field, induced by species‐dependent dipoles formed at the electrode ends. Consequently, the field increases or decreases electronic transport through a molecule (benzene) placed in the nanogap by shifting molecular levels by almost 2 eV in respect to the electrode Fermi level via a field effect akin to the one used for field‐effect transistors. We also observed the local gating in graphene nanopores terminated with different single‐species atoms. Nitrogen‐terminated nanogaps (NtNGs) and nanopores (NtNPs) show the strongest effect. The in‐gap potential can be transformed from a plateau‐like to a saddle‐like shape by tailoring NtNG and NtNP size and termination type. In particular, the saddle‐like potential is applicable in single‐ion trapping and desalination devices. PB - Wiley T2 - ChemPhysChem T1 - Field Effect and Local Gating in Nitrogen‐Terminated Nanopores (NtNP) and Nanogaps (NtNG) in Graphene VL - 22 IS - 3 SP - 336 EP - 341 DO - 10.1002/cphc.202000771 ER -
@article{ author = "Djurišić, Ivana and Dražić, Miloš S. and Tomović, Aleksandar Ž. and Spasenović, Marko and Šljivančanin, Željko and Jovanović, Vladimir P. and Zikić, Radomir", year = "2021", abstract = "Functionalization of electrodes is a wide‐used strategy in various applications ranging from single‐molecule sensing and protein sequencing, to ion trapping, to desalination. We demonstrate, employing non‐equilibrium Green′s function formalism combined with density functional theory, that single‐species (N, H, S, Cl, F) termination of graphene nanogap electrodes results in a strong in‐gap electrostatic field, induced by species‐dependent dipoles formed at the electrode ends. Consequently, the field increases or decreases electronic transport through a molecule (benzene) placed in the nanogap by shifting molecular levels by almost 2 eV in respect to the electrode Fermi level via a field effect akin to the one used for field‐effect transistors. We also observed the local gating in graphene nanopores terminated with different single‐species atoms. Nitrogen‐terminated nanogaps (NtNGs) and nanopores (NtNPs) show the strongest effect. The in‐gap potential can be transformed from a plateau‐like to a saddle‐like shape by tailoring NtNG and NtNP size and termination type. In particular, the saddle‐like potential is applicable in single‐ion trapping and desalination devices.", publisher = "Wiley", journal = "ChemPhysChem", title = "Field Effect and Local Gating in Nitrogen‐Terminated Nanopores (NtNP) and Nanogaps (NtNG) in Graphene", volume = "22", number = "3", pages = "336-341", doi = "10.1002/cphc.202000771" }
Djurišić, I., Dražić, M. S., Tomović, A. Ž., Spasenović, M., Šljivančanin, Ž., Jovanović, V. P.,& Zikić, R.. (2021). Field Effect and Local Gating in Nitrogen‐Terminated Nanopores (NtNP) and Nanogaps (NtNG) in Graphene. in ChemPhysChem Wiley., 22(3), 336-341. https://doi.org/10.1002/cphc.202000771
Djurišić I, Dražić MS, Tomović AŽ, Spasenović M, Šljivančanin Ž, Jovanović VP, Zikić R. Field Effect and Local Gating in Nitrogen‐Terminated Nanopores (NtNP) and Nanogaps (NtNG) in Graphene. in ChemPhysChem. 2021;22(3):336-341. doi:10.1002/cphc.202000771 .
Djurišić, Ivana, Dražić, Miloš S., Tomović, Aleksandar Ž., Spasenović, Marko, Šljivančanin, Željko, Jovanović, Vladimir P., Zikić, Radomir, "Field Effect and Local Gating in Nitrogen‐Terminated Nanopores (NtNP) and Nanogaps (NtNG) in Graphene" in ChemPhysChem, 22, no. 3 (2021):336-341, https://doi.org/10.1002/cphc.202000771 . .