ЦЕР - Централни Репозиторијум ИХТМ-а
Институт за хемију, технологију и металургију
    • English
    • Српски
    • Српски (Serbia)
  • Српски (ћирилица) 
    • Енглески
    • Српски (ћирилица)
    • Српски (латиница)
  • Пријава
Преглед записа 
  •   ЦЕР
  • IHTM
  • Radovi istraživača / Researchers' publications
  • Преглед записа
  •   ЦЕР
  • IHTM
  • Radovi istraživača / Researchers' publications
  • Преглед записа
JavaScript is disabled for your browser. Some features of this site may not work without it.

Field Effect and Local Gating in Nitrogen‐Terminated Nanopores (NtNP) and Nanogaps (NtNG) in Graphene

Само за регистроване кориснике
2021
Аутори
Djurišić, Ivana
Dražić, Miloš S.
Tomović, Aleksandar Ž.
Spasenović, Marko
Šljivančanin, Željko
Jovanović, Vladimir P.
Zikić, Radomir
Чланак у часопису (Објављена верзија)
,
Wiley
Метаподаци
Приказ свих података о документу
Апстракт
Functionalization of electrodes is a wide‐used strategy in various applications ranging from single‐molecule sensing and protein sequencing, to ion trapping, to desalination. We demonstrate, employing non‐equilibrium Green′s function formalism combined with density functional theory, that single‐species (N, H, S, Cl, F) termination of graphene nanogap electrodes results in a strong in‐gap electrostatic field, induced by species‐dependent dipoles formed at the electrode ends. Consequently, the field increases or decreases electronic transport through a molecule (benzene) placed in the nanogap by shifting molecular levels by almost 2 eV in respect to the electrode Fermi level via a field effect akin to the one used for field‐effect transistors. We also observed the local gating in graphene nanopores terminated with different single‐species atoms. Nitrogen‐terminated nanogaps (NtNGs) and nanopores (NtNPs) show the strongest effect. The in‐gap potential can be transformed from a plateau‐li...ke to a saddle‐like shape by tailoring NtNG and NtNP size and termination type. In particular, the saddle‐like potential is applicable in single‐ion trapping and desalination devices.

Кључне речи:
Graphene / Nanogaps / Non‐equilibrium Green′s functions / Nitrogen‐terminated nanogaps (NtNGs) / Nitrogen‐terminated nanopores (NtNPs)
Извор:
ChemPhysChem, 2021, 22, 3, 336-341
Издавач:
  • Wiley
Финансирање / пројекти:
  • Министарство просвете, науке и технолошког развоја Републике Србије, Уговор бр. 200053 (Универзитет у Београду, Институт за мултидисциплинарна истраживања) (RS-200053)
  • Министарство просвете, науке и технолошког развоја Републике Србије, Уговор бр. 200017 (Универзитет у Београду, Институт за нуклеарне науке Винча, Београд-Винча) (RS-200017)
  • Министарство просвете, науке и технолошког развоја Републике Србије, Уговор бр. 200026 (Универзитет у Београду, Институт за хемију, технологију и металургију - ИХТМ) (RS-200026)
  • Swiss National Science Foundation (SCOPES project No. 152406)
  • NanoTools for Ultra Fast DNA Sequencing (EU-214840)
Напомена:
  • The accepted, peer-reviewed version: https://cer.ihtm.bg.ac.rs/handle/123456789/4048
  • The submitted, pre-peer reviewed version: https://cer.ihtm.bg.ac.rs/handle/123456789/4049

DOI: 10.1002/cphc.202000771

ISSN: 1439-4235; 1439-7641

WoS: 000599079400001

Scopus: 2-s2.0-85097555438
[ Google Scholar ]
4
3
URI
https://cer.ihtm.bg.ac.rs/handle/123456789/4044
Колекције
  • Radovi istraživača / Researchers' publications
Институција/група
IHTM
TY  - JOUR
AU  - Djurišić, Ivana
AU  - Dražić, Miloš S.
AU  - Tomović, Aleksandar Ž.
AU  - Spasenović, Marko
AU  - Šljivančanin, Željko
AU  - Jovanović, Vladimir P.
AU  - Zikić, Radomir
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4044
AB  - Functionalization of electrodes is a wide‐used strategy in various applications ranging from single‐molecule sensing and protein sequencing, to ion trapping, to desalination. We demonstrate, employing non‐equilibrium Green′s function formalism combined with density functional theory, that single‐species (N, H, S, Cl, F) termination of graphene nanogap electrodes results in a strong in‐gap electrostatic field, induced by species‐dependent dipoles formed at the electrode ends. Consequently, the field increases or decreases electronic transport through a molecule (benzene) placed in the nanogap by shifting molecular levels by almost 2 eV in respect to the electrode Fermi level via a field effect akin to the one used for field‐effect transistors. We also observed the local gating in graphene nanopores terminated with different single‐species atoms. Nitrogen‐terminated nanogaps (NtNGs) and nanopores (NtNPs) show the strongest effect. The in‐gap potential can be transformed from a plateau‐like to a saddle‐like shape by tailoring NtNG and NtNP size and termination type. In particular, the saddle‐like potential is applicable in single‐ion trapping and desalination devices.
PB  - Wiley
T2  - ChemPhysChem
T1  - Field Effect and Local Gating in Nitrogen‐Terminated Nanopores (NtNP) and Nanogaps (NtNG) in Graphene
VL  - 22
IS  - 3
SP  - 336
EP  - 341
DO  - 10.1002/cphc.202000771
ER  - 
@article{
author = "Djurišić, Ivana and Dražić, Miloš S. and Tomović, Aleksandar Ž. and Spasenović, Marko and Šljivančanin, Željko and Jovanović, Vladimir P. and Zikić, Radomir",
year = "2021",
abstract = "Functionalization of electrodes is a wide‐used strategy in various applications ranging from single‐molecule sensing and protein sequencing, to ion trapping, to desalination. We demonstrate, employing non‐equilibrium Green′s function formalism combined with density functional theory, that single‐species (N, H, S, Cl, F) termination of graphene nanogap electrodes results in a strong in‐gap electrostatic field, induced by species‐dependent dipoles formed at the electrode ends. Consequently, the field increases or decreases electronic transport through a molecule (benzene) placed in the nanogap by shifting molecular levels by almost 2 eV in respect to the electrode Fermi level via a field effect akin to the one used for field‐effect transistors. We also observed the local gating in graphene nanopores terminated with different single‐species atoms. Nitrogen‐terminated nanogaps (NtNGs) and nanopores (NtNPs) show the strongest effect. The in‐gap potential can be transformed from a plateau‐like to a saddle‐like shape by tailoring NtNG and NtNP size and termination type. In particular, the saddle‐like potential is applicable in single‐ion trapping and desalination devices.",
publisher = "Wiley",
journal = "ChemPhysChem",
title = "Field Effect and Local Gating in Nitrogen‐Terminated Nanopores (NtNP) and Nanogaps (NtNG) in Graphene",
volume = "22",
number = "3",
pages = "336-341",
doi = "10.1002/cphc.202000771"
}
Djurišić, I., Dražić, M. S., Tomović, A. Ž., Spasenović, M., Šljivančanin, Ž., Jovanović, V. P.,& Zikić, R.. (2021). Field Effect and Local Gating in Nitrogen‐Terminated Nanopores (NtNP) and Nanogaps (NtNG) in Graphene. in ChemPhysChem
Wiley., 22(3), 336-341.
https://doi.org/10.1002/cphc.202000771
Djurišić I, Dražić MS, Tomović AŽ, Spasenović M, Šljivančanin Ž, Jovanović VP, Zikić R. Field Effect and Local Gating in Nitrogen‐Terminated Nanopores (NtNP) and Nanogaps (NtNG) in Graphene. in ChemPhysChem. 2021;22(3):336-341.
doi:10.1002/cphc.202000771 .
Djurišić, Ivana, Dražić, Miloš S., Tomović, Aleksandar Ž., Spasenović, Marko, Šljivančanin, Željko, Jovanović, Vladimir P., Zikić, Radomir, "Field Effect and Local Gating in Nitrogen‐Terminated Nanopores (NtNP) and Nanogaps (NtNG) in Graphene" in ChemPhysChem, 22, no. 3 (2021):336-341,
https://doi.org/10.1002/cphc.202000771 . .

DSpace software copyright © 2002-2015  DuraSpace
О Централном репозиторијуму (ЦеР) | Пошаљите запажања

re3dataOpenAIRERCUB
 

 

Комплетан репозиторијумИнституције/групеАуториНасловиТемеОва институцијаАуториНасловиТеме

Статистика

Преглед статистика

DSpace software copyright © 2002-2015  DuraSpace
О Централном репозиторијуму (ЦеР) | Пошаљите запажања

re3dataOpenAIRERCUB