CER - Central Repository
Institute of Chemistry, Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Influence of C–H/X (X = S, Cl, N, Pt/Pd) Interactions on the Molecular and Crystal Structures of Pt(II) and Pd(II) Complexes with Thiomorpholine-4-carbonitrile: Crystallographic, Thermal, and DFT Study

Authorized Users Only
2020
Authors
Ristić, Predrag
Blagojević, Vladimir
Janjić, Goran
Rodić, Marko
Vulić, Predrag
Donnard, Morgan
Gulea, Mihaela
Chylewska, Agnieszka
Makowski, Mariusz
Todorović, Tamara
Filipović, Nenad
Article (Published version)
,
American Chemical Society (ACS)
Metadata
Show full item record
Abstract
Pt(II) and Pd(II) complexes (1 and 2, respectively) with thiomorpholine-4-carbonitrile (TM-CN), an N-substituted thiomorpholine derivative, were synthesized from tetrachlorido precursors in water. Structural analysis has shown that 1 represents the first monomeric metal complex with this ligand type with an axial M–S bond with respect to the TM-CN ring chair conformation, while in 2 a typical equatorial M–S bond position with respect to the ring chair conformation was observed. A detailed DFT investigation revealed that axial conformers are more stable for molecular forms of both metals, while intermolecular interactions in the crystals stabilize the axial conformer for Pt(II) and the equatorial conformer for Pd(II). The magnitude of this stabilization in the case of 2 is large enough to change the most stable axial conformer in the molecular form to the equatorial conformer in the crystal. Further investigation of the strength of individual intermolecular interactions revealed signifi...cant differences of some interactions between the two structures. The likely cause of the difference in the crystal structures of experimentally obtained complexes is the fact that 1 and 2 exhibit different dominant interactions: C–H/M and C–H/S are more dominant in 1 and C–H/Cl interactions are more dominant in 2. In addition, DFT calculations have shown that while the axial position of the Pt–S bond with respect to the ring chair conformation results in a significantly shorter C–H/Pt interaction distance than that in the hypothetical equatorial conformer, there is very little difference in C–H/Pd interaction distances in conformers with axial and equatorial positions of Pd–S bond with respect to the ring chair conformation.

Keywords:
Metals / Ligands / Crystal structure / Molecular structure / Molecular interactions / Pt(II) / Pd(II) / M–S bond / DFT / C–H/M interactions / C–H/S interactions / C–H/Cl interactions
Source:
Crystal Growth & Design, 2020, 20, 5, 3018-3033
Publisher:
  • American Chemical Society (ACS)
Funding / projects:
  • Directed synthesis, structure and properties of multifunctional materials (RS-172057)
Note:
  • The peer-reviewed version: https://cer.ihtm.bg.ac.rs/handle/123456789/4029

DOI: 10.1021/acs.cgd.9b01661

ISSN: 1528-7483; 1528-7505

WoS: 000535174000024

Scopus: 2-s2.0-85089237632
[ Google Scholar ]
3
3
URI
https://cer.ihtm.bg.ac.rs/handle/123456789/4028
Collections
  • Radovi istraživača / Researchers' publications
Institution/Community
IHTM
TY  - JOUR
AU  - Ristić, Predrag
AU  - Blagojević, Vladimir
AU  - Janjić, Goran
AU  - Rodić, Marko
AU  - Vulić, Predrag
AU  - Donnard, Morgan
AU  - Gulea, Mihaela
AU  - Chylewska, Agnieszka
AU  - Makowski, Mariusz
AU  - Todorović, Tamara
AU  - Filipović, Nenad
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4028
AB  - Pt(II) and Pd(II) complexes (1 and 2, respectively) with thiomorpholine-4-carbonitrile (TM-CN), an N-substituted thiomorpholine derivative, were synthesized from tetrachlorido precursors in water. Structural analysis has shown that 1 represents the first monomeric metal complex with this ligand type with an axial M–S bond with respect to the TM-CN ring chair conformation, while in 2 a typical equatorial M–S bond position with respect to the ring chair conformation was observed. A detailed DFT investigation revealed that axial conformers are more stable for molecular forms of both metals, while intermolecular interactions in the crystals stabilize the axial conformer for Pt(II) and the equatorial conformer for Pd(II). The magnitude of this stabilization in the case of 2 is large enough to change the most stable axial conformer in the molecular form to the equatorial conformer in the crystal. Further investigation of the strength of individual intermolecular interactions revealed significant differences of some interactions between the two structures. The likely cause of the difference in the crystal structures of experimentally obtained complexes is the fact that 1 and 2 exhibit different dominant interactions: C–H/M and C–H/S are more dominant in 1 and C–H/Cl interactions are more dominant in 2. In addition, DFT calculations have shown that while the axial position of the Pt–S bond with respect to the ring chair conformation results in a significantly shorter C–H/Pt interaction distance than that in the hypothetical equatorial conformer, there is very little difference in C–H/Pd interaction distances in conformers with axial and equatorial positions of Pd–S bond with respect to the ring chair conformation.
PB  - American Chemical Society (ACS)
T2  - Crystal Growth & Design
T1  - Influence of C–H/X (X = S, Cl, N, Pt/Pd) Interactions on the Molecular and Crystal Structures of Pt(II) and Pd(II) Complexes with Thiomorpholine-4-carbonitrile: Crystallographic, Thermal, and DFT Study
VL  - 20
IS  - 5
SP  - 3018
EP  - 3033
DO  - 10.1021/acs.cgd.9b01661
ER  - 
@article{
author = "Ristić, Predrag and Blagojević, Vladimir and Janjić, Goran and Rodić, Marko and Vulić, Predrag and Donnard, Morgan and Gulea, Mihaela and Chylewska, Agnieszka and Makowski, Mariusz and Todorović, Tamara and Filipović, Nenad",
year = "2020",
abstract = "Pt(II) and Pd(II) complexes (1 and 2, respectively) with thiomorpholine-4-carbonitrile (TM-CN), an N-substituted thiomorpholine derivative, were synthesized from tetrachlorido precursors in water. Structural analysis has shown that 1 represents the first monomeric metal complex with this ligand type with an axial M–S bond with respect to the TM-CN ring chair conformation, while in 2 a typical equatorial M–S bond position with respect to the ring chair conformation was observed. A detailed DFT investigation revealed that axial conformers are more stable for molecular forms of both metals, while intermolecular interactions in the crystals stabilize the axial conformer for Pt(II) and the equatorial conformer for Pd(II). The magnitude of this stabilization in the case of 2 is large enough to change the most stable axial conformer in the molecular form to the equatorial conformer in the crystal. Further investigation of the strength of individual intermolecular interactions revealed significant differences of some interactions between the two structures. The likely cause of the difference in the crystal structures of experimentally obtained complexes is the fact that 1 and 2 exhibit different dominant interactions: C–H/M and C–H/S are more dominant in 1 and C–H/Cl interactions are more dominant in 2. In addition, DFT calculations have shown that while the axial position of the Pt–S bond with respect to the ring chair conformation results in a significantly shorter C–H/Pt interaction distance than that in the hypothetical equatorial conformer, there is very little difference in C–H/Pd interaction distances in conformers with axial and equatorial positions of Pd–S bond with respect to the ring chair conformation.",
publisher = "American Chemical Society (ACS)",
journal = "Crystal Growth & Design",
title = "Influence of C–H/X (X = S, Cl, N, Pt/Pd) Interactions on the Molecular and Crystal Structures of Pt(II) and Pd(II) Complexes with Thiomorpholine-4-carbonitrile: Crystallographic, Thermal, and DFT Study",
volume = "20",
number = "5",
pages = "3018-3033",
doi = "10.1021/acs.cgd.9b01661"
}
Ristić, P., Blagojević, V., Janjić, G., Rodić, M., Vulić, P., Donnard, M., Gulea, M., Chylewska, A., Makowski, M., Todorović, T.,& Filipović, N.. (2020). Influence of C–H/X (X = S, Cl, N, Pt/Pd) Interactions on the Molecular and Crystal Structures of Pt(II) and Pd(II) Complexes with Thiomorpholine-4-carbonitrile: Crystallographic, Thermal, and DFT Study. in Crystal Growth & Design
American Chemical Society (ACS)., 20(5), 3018-3033.
https://doi.org/10.1021/acs.cgd.9b01661
Ristić P, Blagojević V, Janjić G, Rodić M, Vulić P, Donnard M, Gulea M, Chylewska A, Makowski M, Todorović T, Filipović N. Influence of C–H/X (X = S, Cl, N, Pt/Pd) Interactions on the Molecular and Crystal Structures of Pt(II) and Pd(II) Complexes with Thiomorpholine-4-carbonitrile: Crystallographic, Thermal, and DFT Study. in Crystal Growth & Design. 2020;20(5):3018-3033.
doi:10.1021/acs.cgd.9b01661 .
Ristić, Predrag, Blagojević, Vladimir, Janjić, Goran, Rodić, Marko, Vulić, Predrag, Donnard, Morgan, Gulea, Mihaela, Chylewska, Agnieszka, Makowski, Mariusz, Todorović, Tamara, Filipović, Nenad, "Influence of C–H/X (X = S, Cl, N, Pt/Pd) Interactions on the Molecular and Crystal Structures of Pt(II) and Pd(II) Complexes with Thiomorpholine-4-carbonitrile: Crystallographic, Thermal, and DFT Study" in Crystal Growth & Design, 20, no. 5 (2020):3018-3033,
https://doi.org/10.1021/acs.cgd.9b01661 . .

Related items

Showing items related by title, author, creator and subject.

  • The influence of water molecule coordination onto the water-aromatic interaction. Strong interactions of water coordinating to a metal ion 

    Vojislavljevic, Dubravka Z.; Janjić, Goran; Ninković, Dragan B.; Kapor, Agnes; Zarić, Snežana D. (Royal Soc Chemistry, Cambridge, 2013)
  • Crystallographic and ab Initio Study of Pyridine Stacking Interactions. Local Nature of Hydrogen Bond Effect in Stacking Interactions 

    Ninković, Dragan B.; Janjić, Goran; Zarić, Snežana D. (American Chemical Society (ACS), 2012)
  • Decisive Influence of Environment on Aromatic/Aromatic Interaction Geometries. Comparison of Aromatic/Aromatic Interactions in Crystal Structures of Small Molecules and in Protein Structures 

    Živković, Jelena M.; Stanković, Ivana M.; Ninković, Dragan B.; Zarić, Snežana D. (USA : American Chemical Society, 2021)

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB