CER - Centralni Repozitorijum IHTM-a
Institut za hemiju, tehnologiju i metalurgiju
    • English
    • Српски
    • Српски (Serbia)
  • Srpski (latinica) 
    • Engleski
    • Srpski (ćirilica)
    • Srpski (latinica)
  • Prijava
Pregled zapisa 
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • Pregled zapisa
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • Pregled zapisa
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effect of mesoporous silica nanoparticles on the properties of polyurethane network composites

Samo za registrovane korisnike
2021
Autori
Pergal, Marija
Brkljačić, Jelena
Tovilović-Kovačević, Gordana
Špírková, Milena
Kodranov, Igor
Manojlović, Dragan
Ostojić, Sanja
Knežević, Nikola Ž.
Članak u časopisu (Objavljena verzija)
Metapodaci
Prikaz svih podataka o dokumentu
Apstrakt
Novel polyurethane nanocomposite (PUN) materials containing different surface-functionalized mesoporous silica nanoparticles (MSNs) were prepared by in situ polymerization methodology. Polyurethane network was formed from poly(dimethylsiloxane)-based macrodiol (PDMS), 4,4′-methylenediphenyldiisocyanate (MDI), and hyperbranched polyester of the second pseudo-generation (BH-20; used as crosslinking agent). PU and PU/MSN nanocomposites contained equal ratios of soft PDMS and hard MDI-BH-20 segments. Non-functionalized and surface-functionalized (with 3-(trihydroxysilyl)propyl methylphosphonate (FOMSN) and 2-[methoxy(polyethyleneoxy)6−9propyl]trimethoxysilane (PEGMSN)) MSNs were used as the nanofillers at a concentration of 1 wt%. Prepared materials were characterized by Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical thermal analy...ses (DMTA), nanoindentation, equilibrium swelling and water absorption measurements. Characteristics of the prepared PUNs when in contact with a biological environment were assessed through testing their biocompatibility, protein adsorption and adhesion of endothelial cells. The favourable influence of MSNs on the physico-chemical and biological characteristics of these novel PUN materials was identified, which evidences their vast applicability potential as coatings for medical devices and implants.

Ključne reči:
Cell adhesion / Coatings / Composite characterization / Mesoporous silica nanoparticles / Nanocomposite / Polyurethane network
Izvor:
Progress in Organic Coatings, 2021, 151, 106049-
Izdavač:
  • Elsevier
Finansiranje / projekti:
  • Ministry of Education, Science and Technological Development of the Republic of Serbia within Serbian-French Bilateral Project No. 337-00-8/2020-04 and the Ministry of Foreign Affairs of the Republic of France.
  • Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije, Ugovor br. 200026 (Univerzitet u Beogradu, Institut za hemiju, tehnologiju i metalurgiju - IHTM) (RS-200026)
  • Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije, Ugovor br. 200168 (Univerzitet u Beogradu, Hemijski fakultet) (RS-200168)
  • Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije, Ugovor br. 200358 (BioSense institut) (RS-200358)
  • Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije, Ugovor br. 200007 (Univerzitet u Beogradu, Institut za biološka istraživanja 'Siniša Stanković') (RS-200007)
  • Czech Science Foundation (No: 18-03932S).

DOI: 10.1016/j.porgcoat.2020.106049

ISSN: 0300-9440

WoS: 000613600400006

Scopus: 2-s2.0-85097208646
[ Google Scholar ]
6
URI
https://cer.ihtm.bg.ac.rs/handle/123456789/4016
Kolekcije
  • Radovi istraživača / Researchers' publications
Institucija/grupa
IHTM
TY  - JOUR
AU  - Pergal, Marija
AU  - Brkljačić, Jelena
AU  - Tovilović-Kovačević, Gordana
AU  - Špírková, Milena
AU  - Kodranov, Igor
AU  - Manojlović, Dragan
AU  - Ostojić, Sanja
AU  - Knežević, Nikola Ž.
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4016
AB  - Novel polyurethane nanocomposite (PUN) materials containing different surface-functionalized mesoporous silica nanoparticles (MSNs) were prepared by in situ polymerization methodology. Polyurethane network was formed from poly(dimethylsiloxane)-based macrodiol (PDMS), 4,4′-methylenediphenyldiisocyanate (MDI), and hyperbranched polyester of the second pseudo-generation (BH-20; used as crosslinking agent). PU and PU/MSN nanocomposites contained equal ratios of soft PDMS and hard MDI-BH-20 segments. Non-functionalized and surface-functionalized (with 3-(trihydroxysilyl)propyl methylphosphonate (FOMSN) and 2-[methoxy(polyethyleneoxy)6−9propyl]trimethoxysilane (PEGMSN)) MSNs were used as the nanofillers at a concentration of 1 wt%. Prepared materials were characterized by Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical thermal analyses (DMTA), nanoindentation, equilibrium swelling and water absorption measurements. Characteristics of the prepared PUNs when in contact with a biological environment were assessed through testing their biocompatibility, protein adsorption and adhesion of endothelial cells. The favourable influence of MSNs on the physico-chemical and biological characteristics of these novel PUN materials was identified, which evidences their vast applicability potential as coatings for medical devices and implants.
PB  - Elsevier
T2  - Progress in Organic Coatings
T1  - Effect of mesoporous silica nanoparticles on the properties of polyurethane network composites
VL  - 151
SP  - 106049
DO  - 10.1016/j.porgcoat.2020.106049
ER  - 
@article{
author = "Pergal, Marija and Brkljačić, Jelena and Tovilović-Kovačević, Gordana and Špírková, Milena and Kodranov, Igor and Manojlović, Dragan and Ostojić, Sanja and Knežević, Nikola Ž.",
year = "2021",
abstract = "Novel polyurethane nanocomposite (PUN) materials containing different surface-functionalized mesoporous silica nanoparticles (MSNs) were prepared by in situ polymerization methodology. Polyurethane network was formed from poly(dimethylsiloxane)-based macrodiol (PDMS), 4,4′-methylenediphenyldiisocyanate (MDI), and hyperbranched polyester of the second pseudo-generation (BH-20; used as crosslinking agent). PU and PU/MSN nanocomposites contained equal ratios of soft PDMS and hard MDI-BH-20 segments. Non-functionalized and surface-functionalized (with 3-(trihydroxysilyl)propyl methylphosphonate (FOMSN) and 2-[methoxy(polyethyleneoxy)6−9propyl]trimethoxysilane (PEGMSN)) MSNs were used as the nanofillers at a concentration of 1 wt%. Prepared materials were characterized by Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical thermal analyses (DMTA), nanoindentation, equilibrium swelling and water absorption measurements. Characteristics of the prepared PUNs when in contact with a biological environment were assessed through testing their biocompatibility, protein adsorption and adhesion of endothelial cells. The favourable influence of MSNs on the physico-chemical and biological characteristics of these novel PUN materials was identified, which evidences their vast applicability potential as coatings for medical devices and implants.",
publisher = "Elsevier",
journal = "Progress in Organic Coatings",
title = "Effect of mesoporous silica nanoparticles on the properties of polyurethane network composites",
volume = "151",
pages = "106049",
doi = "10.1016/j.porgcoat.2020.106049"
}
Pergal, M., Brkljačić, J., Tovilović-Kovačević, G., Špírková, M., Kodranov, I., Manojlović, D., Ostojić, S.,& Knežević, N. Ž.. (2021). Effect of mesoporous silica nanoparticles on the properties of polyurethane network composites. in Progress in Organic Coatings
Elsevier., 151, 106049.
https://doi.org/10.1016/j.porgcoat.2020.106049
Pergal M, Brkljačić J, Tovilović-Kovačević G, Špírková M, Kodranov I, Manojlović D, Ostojić S, Knežević NŽ. Effect of mesoporous silica nanoparticles on the properties of polyurethane network composites. in Progress in Organic Coatings. 2021;151:106049.
doi:10.1016/j.porgcoat.2020.106049 .
Pergal, Marija, Brkljačić, Jelena, Tovilović-Kovačević, Gordana, Špírková, Milena, Kodranov, Igor, Manojlović, Dragan, Ostojić, Sanja, Knežević, Nikola Ž., "Effect of mesoporous silica nanoparticles on the properties of polyurethane network composites" in Progress in Organic Coatings, 151 (2021):106049,
https://doi.org/10.1016/j.porgcoat.2020.106049 . .

DSpace software copyright © 2002-2015  DuraSpace
O Centralnom repozitorijumu (CeR) | Pošaljite zapažanja

re3dataOpenAIRERCUB
 

 

Kompletan repozitorijumInstitucije/grupeAutoriNasloviTemeOva institucijaAutoriNasloviTeme

Statistika

Pregled statistika

DSpace software copyright © 2002-2015  DuraSpace
O Centralnom repozitorijumu (CeR) | Pošaljite zapažanja

re3dataOpenAIRERCUB