CER - Central Repository
Institute of Chemistry, Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ceramics, materials, microelectronics and graph theory new frontiers

Authorized Users Only
2020
Authors
Radjenovic, Branislav
Mitić, Vojislav V.
Ribar, Srđan
Lu, Chun-An
Radović, Ivana
Stajčić, Aleksandar
Novaković, Igor
Vlahović, Branislav
Article (Published version)
Metadata
Show full item record
Abstract
This research is focused on further developing of application and use of graph theory in order to describe relations between grains and to establish control over layers. We used functionalized BaTiO3 nanoparticles coated with Yttrium-based salt. The capacitance change results on super-microstructure levels are the part of the measured values on the bulk samples. The new idea is graph theory application for determination of electronic parameters distribution at the grain boundary and to compare them with the bulk measured values. We present them with vertices in graph, corresponding with grains, connected with edges. Capacitance change with applied voltage was measured on samples sintered in air and nitrogen, up to 100 V. Using graph theory, it has been shown that capacitance change can be successfully calculated on the layers between grains. Within the idea how to get parameters values at microlevel between the grains and pores, mathematical tool can be developed. Besides previously de...scribed 1D case, some original calculations for 2D cases were performed in this study, proving successful graph theory use for the calculation of values at nanolevel, leading to a further minituarization in micropackaging.

Keywords:
Intergranular capacitance change / graph theory / electronic signal / computing technology
Source:
Modern Physics Letters B, 2020, 2150159-
Publisher:
  • World Scientific
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) (RS-200026)

DOI: 10.1142/S0217984921501591

ISSN: 0217-9849

WoS: 000599923700012

Scopus: 2-s2.0-85097176369
[ Google Scholar ]
10
5
URI
https://cer.ihtm.bg.ac.rs/handle/123456789/4005
Collections
  • Radovi istraživača / Researchers' publications
Institution/Community
IHTM
TY  - JOUR
AU  - Radjenovic, Branislav
AU  - Mitić, Vojislav V.
AU  - Ribar, Srđan
AU  - Lu, Chun-An
AU  - Radović, Ivana
AU  - Stajčić, Aleksandar
AU  - Novaković, Igor
AU  - Vlahović, Branislav
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4005
AB  - This research is focused on further developing of application and use of graph theory in order to describe relations between grains and to establish control over layers. We used functionalized BaTiO3 nanoparticles coated with Yttrium-based salt. The capacitance change results on super-microstructure levels are the part of the measured values on the bulk samples. The new idea is graph theory application for determination of electronic parameters distribution at the grain boundary and to compare them with the bulk measured values. We present them with vertices in graph, corresponding with grains, connected with edges. Capacitance change with applied voltage was measured on samples sintered in air and nitrogen, up to 100 V. Using graph theory, it has been shown that capacitance change can be successfully calculated on the layers between grains. Within the idea how to get parameters values at microlevel between the grains and pores, mathematical tool can be developed. Besides previously described 1D case, some original calculations for 2D cases were performed in this study, proving successful graph theory use for the calculation of values at nanolevel, leading to a further minituarization in micropackaging.
PB  - World Scientific
T2  - Modern Physics Letters B
T1  - Ceramics, materials, microelectronics and graph theory new frontiers
SP  - 2150159
DO  - 10.1142/S0217984921501591
ER  - 
@article{
author = "Radjenovic, Branislav and Mitić, Vojislav V. and Ribar, Srđan and Lu, Chun-An and Radović, Ivana and Stajčić, Aleksandar and Novaković, Igor and Vlahović, Branislav",
year = "2020",
abstract = "This research is focused on further developing of application and use of graph theory in order to describe relations between grains and to establish control over layers. We used functionalized BaTiO3 nanoparticles coated with Yttrium-based salt. The capacitance change results on super-microstructure levels are the part of the measured values on the bulk samples. The new idea is graph theory application for determination of electronic parameters distribution at the grain boundary and to compare them with the bulk measured values. We present them with vertices in graph, corresponding with grains, connected with edges. Capacitance change with applied voltage was measured on samples sintered in air and nitrogen, up to 100 V. Using graph theory, it has been shown that capacitance change can be successfully calculated on the layers between grains. Within the idea how to get parameters values at microlevel between the grains and pores, mathematical tool can be developed. Besides previously described 1D case, some original calculations for 2D cases were performed in this study, proving successful graph theory use for the calculation of values at nanolevel, leading to a further minituarization in micropackaging.",
publisher = "World Scientific",
journal = "Modern Physics Letters B",
title = "Ceramics, materials, microelectronics and graph theory new frontiers",
pages = "2150159",
doi = "10.1142/S0217984921501591"
}
Radjenovic, B., Mitić, V. V., Ribar, S., Lu, C., Radović, I., Stajčić, A., Novaković, I.,& Vlahović, B.. (2020). Ceramics, materials, microelectronics and graph theory new frontiers. in Modern Physics Letters B
World Scientific., 2150159.
https://doi.org/10.1142/S0217984921501591
Radjenovic B, Mitić VV, Ribar S, Lu C, Radović I, Stajčić A, Novaković I, Vlahović B. Ceramics, materials, microelectronics and graph theory new frontiers. in Modern Physics Letters B. 2020;:2150159.
doi:10.1142/S0217984921501591 .
Radjenovic, Branislav, Mitić, Vojislav V., Ribar, Srđan, Lu, Chun-An, Radović, Ivana, Stajčić, Aleksandar, Novaković, Igor, Vlahović, Branislav, "Ceramics, materials, microelectronics and graph theory new frontiers" in Modern Physics Letters B (2020):2150159,
https://doi.org/10.1142/S0217984921501591 . .

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB