CER - Central Repository
Institute of Chemistry, Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Synthesis and DNase I inhibitory properties of new benzocyclobutane-2,5-diones

Authorized Users Only
2019
Authors
Bondžić, Bojan
Džambaski, Zdravko
Kolarević, Ana
Đorđević, Aleksandra
Anderluh, Marko
Šmelcerović, Andrija
Article (Published version)
,
Newlands Press
Metadata
Show full item record
Abstract
Eight new benzocyclobutane-2,5-diones (1a–1h) were synthesized, and their inhibitory properties against bovine pancreatic DNase I were examined in vitro. Methods & results: Compounds 1a–1h were synthesized using photocycloaddition of duroquinone with various phenyl-substituted ethylenes in the presence of 18W compact fluorescent lamp (visible light). Two compounds, 1,3,4,6-tetramethyl-7- phenylbicyclo[4.2.0]oct-3-ene-2,5-dione (1a) and 1,3,4,6-tetramethyl-7-p-tolylbicyclo[4.2.0]oct-3-ene-2,5- dione (1b) inhibited DNase I in a noncompetitive manner with IC50 values below 150 μM and showed to be more potent DNase I inhibitors than crystal violet, used as a positive control. In order to analyze potential binding sites for the studied compounds with DNase I, molecular docking study was performed. Conclusion: The studied benzocyclobutane-2,5-diones offer a good starting point for a design of new DNase I inhibitors.
Keywords:
benzocyclobutane-2,5-diones / DNase I inhibition / Lineweaver–Burk plot / molecular docking / synthesis
Source:
Future Medicinal Chemistry, 2019, 11, 18, 2415-
Publisher:
  • Future Medicine Ltd.
Funding / projects:
  • Experimental and theoretical study of reactivity and biological activity of stereodefined thiazolidines and their synthetic analogues (RS-172020)
  • Obtaining, physicochemical characterization, analysis and biological activity of pharmacologically active compounds (RS-172044)
  • Faculty of Medicine of the University of Nis (internal project no. 4)
  • Slovenian Research Agency (grant no. P1-0208)

DOI: 10.4155/fmc-2019-0032

ISSN: 1756-8919

PubMed: 31526044

WoS: 000498836900006

Scopus: 2-s2.0-85072993481
[ Google Scholar ]
6
6
URI
https://cer.ihtm.bg.ac.rs/handle/123456789/3957
Collections
  • Radovi istraživača / Researchers' publications
Institution/Community
IHTM
TY  - JOUR
AU  - Bondžić, Bojan
AU  - Džambaski, Zdravko
AU  - Kolarević, Ana
AU  - Đorđević, Aleksandra
AU  - Anderluh, Marko
AU  - Šmelcerović, Andrija
PY  - 2019
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3957
AB  - Eight new benzocyclobutane-2,5-diones (1a–1h) were synthesized, and their inhibitory properties
against bovine pancreatic DNase I were examined in vitro. Methods & results: Compounds 1a–1h
were synthesized using photocycloaddition of duroquinone with various phenyl-substituted ethylenes
in the presence of 18W compact fluorescent lamp (visible light). Two compounds, 1,3,4,6-tetramethyl-7-
phenylbicyclo[4.2.0]oct-3-ene-2,5-dione (1a) and 1,3,4,6-tetramethyl-7-p-tolylbicyclo[4.2.0]oct-3-ene-2,5-
dione (1b) inhibited DNase I in a noncompetitive manner with IC50 values below 150 μM and showed to
be more potent DNase I inhibitors than crystal violet, used as a positive control. In order to analyze potential
binding sites for the studied compounds with DNase I, molecular docking study was performed.
Conclusion: The studied benzocyclobutane-2,5-diones offer a good starting point for a design of new
DNase I inhibitors.
PB  - Future Medicine Ltd.
T2  - Future Medicinal Chemistry
T1  - Synthesis and DNase I inhibitory properties of new benzocyclobutane-2,5-diones
VL  - 11
VL  - 2426
IS  - 18
SP  - 2415
DO  - 10.4155/fmc-2019-0032
ER  - 
@article{
author = "Bondžić, Bojan and Džambaski, Zdravko and Kolarević, Ana and Đorđević, Aleksandra and Anderluh, Marko and Šmelcerović, Andrija",
year = "2019",
abstract = "Eight new benzocyclobutane-2,5-diones (1a–1h) were synthesized, and their inhibitory properties
against bovine pancreatic DNase I were examined in vitro. Methods & results: Compounds 1a–1h
were synthesized using photocycloaddition of duroquinone with various phenyl-substituted ethylenes
in the presence of 18W compact fluorescent lamp (visible light). Two compounds, 1,3,4,6-tetramethyl-7-
phenylbicyclo[4.2.0]oct-3-ene-2,5-dione (1a) and 1,3,4,6-tetramethyl-7-p-tolylbicyclo[4.2.0]oct-3-ene-2,5-
dione (1b) inhibited DNase I in a noncompetitive manner with IC50 values below 150 μM and showed to
be more potent DNase I inhibitors than crystal violet, used as a positive control. In order to analyze potential
binding sites for the studied compounds with DNase I, molecular docking study was performed.
Conclusion: The studied benzocyclobutane-2,5-diones offer a good starting point for a design of new
DNase I inhibitors.",
publisher = "Future Medicine Ltd.",
journal = "Future Medicinal Chemistry",
title = "Synthesis and DNase I inhibitory properties of new benzocyclobutane-2,5-diones",
volume = "11, 2426",
number = "18",
pages = "2415",
doi = "10.4155/fmc-2019-0032"
}
Bondžić, B., Džambaski, Z., Kolarević, A., Đorđević, A., Anderluh, M.,& Šmelcerović, A.. (2019). Synthesis and DNase I inhibitory properties of new benzocyclobutane-2,5-diones. in Future Medicinal Chemistry
Future Medicine Ltd.., 11(18), 2415.
https://doi.org/10.4155/fmc-2019-0032
Bondžić B, Džambaski Z, Kolarević A, Đorđević A, Anderluh M, Šmelcerović A. Synthesis and DNase I inhibitory properties of new benzocyclobutane-2,5-diones. in Future Medicinal Chemistry. 2019;11(18):2415.
doi:10.4155/fmc-2019-0032 .
Bondžić, Bojan, Džambaski, Zdravko, Kolarević, Ana, Đorđević, Aleksandra, Anderluh, Marko, Šmelcerović, Andrija, "Synthesis and DNase I inhibitory properties of new benzocyclobutane-2,5-diones" in Future Medicinal Chemistry, 11, no. 18 (2019):2415,
https://doi.org/10.4155/fmc-2019-0032 . .

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB