CER - Central Repository
Institute of Chemistry, Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Relevance of the capacity of phosphorylated fructose to scavenge the hydroxyl radical

Authorized Users Only
2009
Authors
Spasojević, Ivan
Mojović, Miloš
Blagojević, Duško
Spasić, Snežana
Jones, David
Nikolić-Kokić, Aleksandra
Spasić, Mihajlo
Article (Published version)
,
Elsevier
Metadata
Show full item record
Abstract
The hydroxyl radical (radical dotOH) has detrimental biological activity due to its very high reactivity. Our experiments were designed to determine the effects of equimolar concentrations of glucose, fructose and mannitol and three phosphorylated forms of fructose (fructose-1-phosphate (F1P); fructose-6-phosphate (F6P); and fructose-1,6-bis(phosphate) (F16BP)) on radical dotOH radical production via the Fenton reaction. EPR spectroscopy using spin-trap DEPMPO was applied to detect radical production. We found that the percentage inhibition of radical dotOH radical formation decreased in the order F16BP > F1P > F6P > fructose > mannitol = glucose. As ketoses can sequester redox-active iron thus preventing the Fenton reaction, the Haber–Weiss-like system was also employed to generate radical dotOH, so that the effect of iron sequestration could be distinguished from direct radical dotOH radical scavenging. In the latter system, the rank order of radical dotOH scavenging activity was F16...BP > F1P > F6P > fructose = mannitol = glucose. Our results clearly demonstrate that intracellular phosphorylated forms of fructose have more scavenging properties than fructose or glucose, leading us to conclude that the acute administration of fructose could overcome the body’s reaction to exogenous antioxidants during appropriate therapy in certain pathophysiological conditions related to oxidative stress, such as sepsis, neurodegenerative diseases, atherosclerosis, malignancy, and some complications of pregnancy.

Keywords:
Fructose / Glucose / Hydroxyl radical / Mannitol / EPR spectroscopy / Haber–Weiss reaction
Source:
Carbohydrate Research, 2009, 344, 1, 80-84
Publisher:
  • Elsevier
Funding / projects:
  • The Role of Redox-Active Substances in the Maintenance of Homeostasis (RS-143034)
  • Biofizička istraživanja membranskih procesa: interakcija membranskih receptora i kanala sa spoljašnjim faktorima i intracelularna regulacija (RS-143016)

DOI: 10.1016/j.carres.2008.09.025

ISSN: 0008-6215; 1873-426X

WoS: 000262596200011

Scopus: 2-s2.0-57749111966
[ Google Scholar ]
52
45
URI
https://cer.ihtm.bg.ac.rs/handle/123456789/3937
Collections
  • Radovi istraživača / Researchers' publications
Institution/Community
IHTM
TY  - JOUR
AU  - Spasojević, Ivan
AU  - Mojović, Miloš
AU  - Blagojević, Duško
AU  - Spasić, Snežana
AU  - Jones, David
AU  - Nikolić-Kokić, Aleksandra
AU  - Spasić, Mihajlo
PY  - 2009
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3937
AB  - The hydroxyl radical (radical dotOH) has detrimental biological activity due to its very high reactivity. Our experiments were designed to determine the effects of equimolar concentrations of glucose, fructose and mannitol and three phosphorylated forms of fructose (fructose-1-phosphate (F1P); fructose-6-phosphate (F6P); and fructose-1,6-bis(phosphate) (F16BP)) on radical dotOH radical production via the Fenton reaction. EPR spectroscopy using spin-trap DEPMPO was applied to detect radical production. We found that the percentage inhibition of radical dotOH radical formation decreased in the order F16BP > F1P > F6P > fructose > mannitol = glucose. As ketoses can sequester redox-active iron thus preventing the Fenton reaction, the Haber–Weiss-like system was also employed to generate radical dotOH, so that the effect of iron sequestration could be distinguished from direct radical dotOH radical scavenging. In the latter system, the rank order of radical dotOH scavenging activity was F16BP > F1P > F6P > fructose = mannitol = glucose. Our results clearly demonstrate that intracellular phosphorylated forms of fructose have more scavenging properties than fructose or glucose, leading us to conclude that the acute administration of fructose could overcome the body’s reaction to exogenous antioxidants during appropriate therapy in certain pathophysiological conditions related to oxidative stress, such as sepsis, neurodegenerative diseases, atherosclerosis, malignancy, and some complications of pregnancy.
PB  - Elsevier
T2  - Carbohydrate Research
T1  - Relevance of the capacity of phosphorylated fructose to scavenge the hydroxyl radical
VL  - 344
IS  - 1
SP  - 80
EP  - 84
DO  - 10.1016/j.carres.2008.09.025
ER  - 
@article{
author = "Spasojević, Ivan and Mojović, Miloš and Blagojević, Duško and Spasić, Snežana and Jones, David and Nikolić-Kokić, Aleksandra and Spasić, Mihajlo",
year = "2009",
abstract = "The hydroxyl radical (radical dotOH) has detrimental biological activity due to its very high reactivity. Our experiments were designed to determine the effects of equimolar concentrations of glucose, fructose and mannitol and three phosphorylated forms of fructose (fructose-1-phosphate (F1P); fructose-6-phosphate (F6P); and fructose-1,6-bis(phosphate) (F16BP)) on radical dotOH radical production via the Fenton reaction. EPR spectroscopy using spin-trap DEPMPO was applied to detect radical production. We found that the percentage inhibition of radical dotOH radical formation decreased in the order F16BP > F1P > F6P > fructose > mannitol = glucose. As ketoses can sequester redox-active iron thus preventing the Fenton reaction, the Haber–Weiss-like system was also employed to generate radical dotOH, so that the effect of iron sequestration could be distinguished from direct radical dotOH radical scavenging. In the latter system, the rank order of radical dotOH scavenging activity was F16BP > F1P > F6P > fructose = mannitol = glucose. Our results clearly demonstrate that intracellular phosphorylated forms of fructose have more scavenging properties than fructose or glucose, leading us to conclude that the acute administration of fructose could overcome the body’s reaction to exogenous antioxidants during appropriate therapy in certain pathophysiological conditions related to oxidative stress, such as sepsis, neurodegenerative diseases, atherosclerosis, malignancy, and some complications of pregnancy.",
publisher = "Elsevier",
journal = "Carbohydrate Research",
title = "Relevance of the capacity of phosphorylated fructose to scavenge the hydroxyl radical",
volume = "344",
number = "1",
pages = "80-84",
doi = "10.1016/j.carres.2008.09.025"
}
Spasojević, I., Mojović, M., Blagojević, D., Spasić, S., Jones, D., Nikolić-Kokić, A.,& Spasić, M.. (2009). Relevance of the capacity of phosphorylated fructose to scavenge the hydroxyl radical. in Carbohydrate Research
Elsevier., 344(1), 80-84.
https://doi.org/10.1016/j.carres.2008.09.025
Spasojević I, Mojović M, Blagojević D, Spasić S, Jones D, Nikolić-Kokić A, Spasić M. Relevance of the capacity of phosphorylated fructose to scavenge the hydroxyl radical. in Carbohydrate Research. 2009;344(1):80-84.
doi:10.1016/j.carres.2008.09.025 .
Spasojević, Ivan, Mojović, Miloš, Blagojević, Duško, Spasić, Snežana, Jones, David, Nikolić-Kokić, Aleksandra, Spasić, Mihajlo, "Relevance of the capacity of phosphorylated fructose to scavenge the hydroxyl radical" in Carbohydrate Research, 344, no. 1 (2009):80-84,
https://doi.org/10.1016/j.carres.2008.09.025 . .

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB