CER - Central Repository
Institute of Chemistry, Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Photocatalytic hydrogen evolution over surface-modified titanate nanotubes by 5-aminosalicylic acid decorated with silver nanoparticles

Authorized Users Only
2020
Authors
Barbieriková, Zuzana
Lončarević, Davor
Papan, Jelena
Vukoje, Ivana
Stoiljković, Milovan
Ahrenkiel, Scott Phillip
Nedeljković, Jovan M.
Article (Published version)
,
The Society of Powder Technology Japan
Metadata
Show full item record
Abstract
The efficiency of titanate-nanotubes-based photocatalysts towards hydrogen production was studied in the presence of the sacrificial agent, 2-propanol. The highest hydrogen production rate (~120 lmol h 1 g 1 ) was observed over surface-modified titanate nanotubes by 5-amino salicylic acid decorated with nanometer-sized silver nanoparticles. The X-ray diffraction analysis, transmission electron microscopy, nitrogen adsorption–desorption isotherms, and diffuse reflection spectroscopy were applied to characterize the prepared photocatalytic materials. The better photocatalytic performance of inorganic–organic hybrid materials in comparison to the pristine titanate nanotubes is a consequence of their improved light-harvesting ability due to the formation of interfacial charge transfer (ICT) complex, as well as the presence of metallic silver nanoparticles that suppress the recombination of photo-generated charge carriers. The spin trapping EPR experiments under irradiation of prepared phot...ocatalysts with either UV or visible light were used to monitor the appearance of hydroxyl radicals and superoxide radical anions. The generation of superoxide radical anions under visible light irradiation was detected for hybrid materials, but not for the pristine titanate nanotubes. These results are a consequence of enhanced promotion ofelectrons to the conduction band due to extended absorption in visible spectral range in hybrids and support the higher efficiency of hydrogen generation observed for surface-modified titanate nanotubes by 5-amino salicylic acid decorated with silver nanoparticles.

Keywords:
Hydrogen production / Titanate nanotubes / Interfacial charge-transfer complex / Spin trapping EPR experiments
Source:
Advanced Powder Technology, 2020, 31, 12, 4683-4690
Publisher:
  • Elsevier B.V. and The Society of Powder Technology Japan
Funding / projects:
  • Ministry of Education, Science and Technological Development of the Republic of Serbia
  • Scientific Grant Agency of the Slovak Republic (Project VEGA 1/0026/18)
Note:
  • In Press, Corrected Proof

DOI: 10.1016/j.apt.2020.11.001

ISSN: 0921-8831

WoS: 000612084200002

[ Google Scholar ]
1
URI
https://cer.ihtm.bg.ac.rs/handle/123456789/3795
Collections
  • Radovi istraživača / Researchers' publications
Institution/Community
IHTM
TY  - JOUR
AU  - Barbieriková, Zuzana
AU  - Lončarević, Davor
AU  - Papan, Jelena
AU  - Vukoje, Ivana
AU  - Stoiljković, Milovan
AU  - Ahrenkiel, Scott Phillip
AU  - Nedeljković, Jovan M.
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3795
AB  - The efficiency of titanate-nanotubes-based photocatalysts towards hydrogen production was studied in the presence of the sacrificial agent, 2-propanol. The highest hydrogen production rate (~120 lmol h 1 g 1 ) was observed over surface-modified titanate nanotubes by 5-amino salicylic acid decorated with nanometer-sized silver nanoparticles. The X-ray diffraction analysis, transmission electron microscopy, nitrogen adsorption–desorption isotherms, and diffuse reflection spectroscopy were applied to characterize the prepared photocatalytic materials. The better photocatalytic performance of inorganic–organic hybrid materials in comparison to the pristine titanate nanotubes is a consequence of their improved light-harvesting ability due to the formation of interfacial charge transfer (ICT) complex, as well as the presence of metallic silver nanoparticles that suppress the recombination of photo-generated charge carriers. The spin trapping EPR experiments under irradiation of prepared photocatalysts with either UV or visible light were used to monitor the appearance of hydroxyl radicals and superoxide radical anions. The generation of superoxide radical anions under visible light irradiation was detected for hybrid materials, but not for the pristine titanate nanotubes. These results are a consequence of enhanced promotion ofelectrons to the conduction band due to extended absorption in visible spectral range in hybrids and support the higher efficiency of hydrogen generation observed for surface-modified titanate nanotubes by 5-amino salicylic acid decorated with silver nanoparticles.
PB  - Elsevier B.V. and The Society of Powder Technology Japan
T2  - Advanced Powder Technology
T1  - Photocatalytic hydrogen evolution over surface-modified titanate nanotubes by 5-aminosalicylic acid decorated with silver nanoparticles
VL  - 31
IS  - 12
SP  - 4683
EP  - 4690
DO  - 10.1016/j.apt.2020.11.001
ER  - 
@article{
author = "Barbieriková, Zuzana and Lončarević, Davor and Papan, Jelena and Vukoje, Ivana and Stoiljković, Milovan and Ahrenkiel, Scott Phillip and Nedeljković, Jovan M.",
year = "2020",
abstract = "The efficiency of titanate-nanotubes-based photocatalysts towards hydrogen production was studied in the presence of the sacrificial agent, 2-propanol. The highest hydrogen production rate (~120 lmol h 1 g 1 ) was observed over surface-modified titanate nanotubes by 5-amino salicylic acid decorated with nanometer-sized silver nanoparticles. The X-ray diffraction analysis, transmission electron microscopy, nitrogen adsorption–desorption isotherms, and diffuse reflection spectroscopy were applied to characterize the prepared photocatalytic materials. The better photocatalytic performance of inorganic–organic hybrid materials in comparison to the pristine titanate nanotubes is a consequence of their improved light-harvesting ability due to the formation of interfacial charge transfer (ICT) complex, as well as the presence of metallic silver nanoparticles that suppress the recombination of photo-generated charge carriers. The spin trapping EPR experiments under irradiation of prepared photocatalysts with either UV or visible light were used to monitor the appearance of hydroxyl radicals and superoxide radical anions. The generation of superoxide radical anions under visible light irradiation was detected for hybrid materials, but not for the pristine titanate nanotubes. These results are a consequence of enhanced promotion ofelectrons to the conduction band due to extended absorption in visible spectral range in hybrids and support the higher efficiency of hydrogen generation observed for surface-modified titanate nanotubes by 5-amino salicylic acid decorated with silver nanoparticles.",
publisher = "Elsevier B.V. and The Society of Powder Technology Japan",
journal = "Advanced Powder Technology",
title = "Photocatalytic hydrogen evolution over surface-modified titanate nanotubes by 5-aminosalicylic acid decorated with silver nanoparticles",
volume = "31",
number = "12",
pages = "4683-4690",
doi = "10.1016/j.apt.2020.11.001"
}
Barbieriková, Z., Lončarević, D., Papan, J., Vukoje, I., Stoiljković, M., Ahrenkiel, S. P.,& Nedeljković, J. M.. (2020). Photocatalytic hydrogen evolution over surface-modified titanate nanotubes by 5-aminosalicylic acid decorated with silver nanoparticles. in Advanced Powder Technology
Elsevier B.V. and The Society of Powder Technology Japan., 31(12), 4683-4690.
https://doi.org/10.1016/j.apt.2020.11.001
Barbieriková Z, Lončarević D, Papan J, Vukoje I, Stoiljković M, Ahrenkiel SP, Nedeljković JM. Photocatalytic hydrogen evolution over surface-modified titanate nanotubes by 5-aminosalicylic acid decorated with silver nanoparticles. in Advanced Powder Technology. 2020;31(12):4683-4690.
doi:10.1016/j.apt.2020.11.001 .
Barbieriková, Zuzana, Lončarević, Davor, Papan, Jelena, Vukoje, Ivana, Stoiljković, Milovan, Ahrenkiel, Scott Phillip, Nedeljković, Jovan M., "Photocatalytic hydrogen evolution over surface-modified titanate nanotubes by 5-aminosalicylic acid decorated with silver nanoparticles" in Advanced Powder Technology, 31, no. 12 (2020):4683-4690,
https://doi.org/10.1016/j.apt.2020.11.001 . .

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB