Gamma irradiation of graphene quantum dots with ethylenediamine: Antioxidant for ion sensing
Authors
Jovanović, Svetlana
Dorontić, Slađana
Jovanović, Dragana

Ciasca, Gabriele
Budimir, Milica

Bonasera, Aurelio

Scopelliti, Michelangelo

Marković, Olivera

Todorović Marković, Biljana

Article (Accepted Version)
Metadata
Show full item recordAbstract
Due to the low consumption of chemicals, the absence of toxic residual side products, the procedure simplicity and time-saving aspects, gamma irradiation offers advantages over the classical chemical protocols. We successfully employed gamma irradiation in order to introduce N-atoms in Graphene Quantum Dots (GQDs). By irradiating GQDs water dispersions in the presence of isopropyl alcohol and ethylenediamine, at doses of 25, 50 and 200 kGy, we attached amino groups onto GQDs in a single synthetic step. At the same time, a chemical reduction is achieved, too. Selected conditions induced incorporation of N-atoms within GDQs atomic lattice (around 3 at%), at all applied doses. Additionally, the C-atoms percentage was highly increased, from 63 to 79 at % or higher. The zeta potential of dots changed from −34.6 to +9.1 mV, due to the modification of functionalizing groups localized at the surface. Produced chemical changes lead to the desired alteration of the GQDs optical properties, such ...as an increased photoluminescence intensity, a higher photoluminescence quantum yields (from 2.07 to 18.40%) and a narrowing of the spectral features in the emission spectra. The ability of gamma-irradiated GQDs to quench free radical species was investigated and positively assessed; additionally, non-enzymatic optical detection of Cu(II) ions using GQDs as a sensor was studied and the detection limits areherein reported. These results suggest that GQDs can be potentially applied as smart photoluminescent sensors for metal cations.
Keywords:
Chemical properties / Optical properties / Sensor / CarbonSource:
Ceramics International, 2020, 46, 15, 23611-23622Publisher:
- Elsevier
Funding / projects:
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča) (RS-200017)
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) (RS-200026)
- The Italian Ministry of University and Research (MURST, ex-MIUR): PON “AIM: Attrazione e Mobilità Internazionale”, call AIM1809078-2, CUP B78D19000280001
- ATeN Center (University of Palermo; project “Mediterranean Center for Human Health Advanced Biotechnologies (CHAB)” PON R&C 2007–2013)
Note:
- This is the peer-reviewed version of the article: S. Jovanović, Slađ. Dorontić, D. Jovanović, G. Ciasca, M. Budimir, A. Bonasera, M. Scopelliti, O. Marković, B. Todorović Marković, Gamma irradiation of graphene quantum dots with ethylenediamine: Antioxidant for ion sensing, Ceramics International (2020), 46, 15, 23611-23622 DOI: https://doi.org/10.1016/j.ceramint.2020.06.133
- The published version: http://cer.ihtm.bg.ac.rs/handle/123456789/3593
DOI: 10.1016/j.ceramint.2020.06.133
ISSN: 0272-8842
WoS: 000564521900008
Scopus: 2-s2.0-85087691750
Collections
Institution/Community
IHTMTY - JOUR AU - Jovanović, Svetlana AU - Dorontić, Slađana AU - Jovanović, Dragana AU - Ciasca, Gabriele AU - Budimir, Milica AU - Bonasera, Aurelio AU - Scopelliti, Michelangelo AU - Marković, Olivera AU - Todorović Marković, Biljana PY - 2020 UR - https://cer.ihtm.bg.ac.rs/handle/123456789/3621 AB - Due to the low consumption of chemicals, the absence of toxic residual side products, the procedure simplicity and time-saving aspects, gamma irradiation offers advantages over the classical chemical protocols. We successfully employed gamma irradiation in order to introduce N-atoms in Graphene Quantum Dots (GQDs). By irradiating GQDs water dispersions in the presence of isopropyl alcohol and ethylenediamine, at doses of 25, 50 and 200 kGy, we attached amino groups onto GQDs in a single synthetic step. At the same time, a chemical reduction is achieved, too. Selected conditions induced incorporation of N-atoms within GDQs atomic lattice (around 3 at%), at all applied doses. Additionally, the C-atoms percentage was highly increased, from 63 to 79 at % or higher. The zeta potential of dots changed from −34.6 to +9.1 mV, due to the modification of functionalizing groups localized at the surface. Produced chemical changes lead to the desired alteration of the GQDs optical properties, such as an increased photoluminescence intensity, a higher photoluminescence quantum yields (from 2.07 to 18.40%) and a narrowing of the spectral features in the emission spectra. The ability of gamma-irradiated GQDs to quench free radical species was investigated and positively assessed; additionally, non-enzymatic optical detection of Cu(II) ions using GQDs as a sensor was studied and the detection limits areherein reported. These results suggest that GQDs can be potentially applied as smart photoluminescent sensors for metal cations. PB - Elsevier T2 - Ceramics International T1 - Gamma irradiation of graphene quantum dots with ethylenediamine: Antioxidant for ion sensing VL - 46 IS - 15 SP - 23611 EP - 23622 DO - 10.1016/j.ceramint.2020.06.133 ER -
@article{ author = "Jovanović, Svetlana and Dorontić, Slađana and Jovanović, Dragana and Ciasca, Gabriele and Budimir, Milica and Bonasera, Aurelio and Scopelliti, Michelangelo and Marković, Olivera and Todorović Marković, Biljana", year = "2020", abstract = "Due to the low consumption of chemicals, the absence of toxic residual side products, the procedure simplicity and time-saving aspects, gamma irradiation offers advantages over the classical chemical protocols. We successfully employed gamma irradiation in order to introduce N-atoms in Graphene Quantum Dots (GQDs). By irradiating GQDs water dispersions in the presence of isopropyl alcohol and ethylenediamine, at doses of 25, 50 and 200 kGy, we attached amino groups onto GQDs in a single synthetic step. At the same time, a chemical reduction is achieved, too. Selected conditions induced incorporation of N-atoms within GDQs atomic lattice (around 3 at%), at all applied doses. Additionally, the C-atoms percentage was highly increased, from 63 to 79 at % or higher. The zeta potential of dots changed from −34.6 to +9.1 mV, due to the modification of functionalizing groups localized at the surface. Produced chemical changes lead to the desired alteration of the GQDs optical properties, such as an increased photoluminescence intensity, a higher photoluminescence quantum yields (from 2.07 to 18.40%) and a narrowing of the spectral features in the emission spectra. The ability of gamma-irradiated GQDs to quench free radical species was investigated and positively assessed; additionally, non-enzymatic optical detection of Cu(II) ions using GQDs as a sensor was studied and the detection limits areherein reported. These results suggest that GQDs can be potentially applied as smart photoluminescent sensors for metal cations.", publisher = "Elsevier", journal = "Ceramics International", title = "Gamma irradiation of graphene quantum dots with ethylenediamine: Antioxidant for ion sensing", volume = "46", number = "15", pages = "23611-23622", doi = "10.1016/j.ceramint.2020.06.133" }
Jovanović, S., Dorontić, S., Jovanović, D., Ciasca, G., Budimir, M., Bonasera, A., Scopelliti, M., Marković, O.,& Todorović Marković, B.. (2020). Gamma irradiation of graphene quantum dots with ethylenediamine: Antioxidant for ion sensing. in Ceramics International Elsevier., 46(15), 23611-23622. https://doi.org/10.1016/j.ceramint.2020.06.133
Jovanović S, Dorontić S, Jovanović D, Ciasca G, Budimir M, Bonasera A, Scopelliti M, Marković O, Todorović Marković B. Gamma irradiation of graphene quantum dots with ethylenediamine: Antioxidant for ion sensing. in Ceramics International. 2020;46(15):23611-23622. doi:10.1016/j.ceramint.2020.06.133 .
Jovanović, Svetlana, Dorontić, Slađana, Jovanović, Dragana, Ciasca, Gabriele, Budimir, Milica, Bonasera, Aurelio, Scopelliti, Michelangelo, Marković, Olivera, Todorović Marković, Biljana, "Gamma irradiation of graphene quantum dots with ethylenediamine: Antioxidant for ion sensing" in Ceramics International, 46, no. 15 (2020):23611-23622, https://doi.org/10.1016/j.ceramint.2020.06.133 . .