CER - Central Repository
Institute of Chemistry, Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Investigation on the Electrochemical Behaviour and Deposition Mechanism of Neodymium in NdF3–LiF–Nd2O3 Melt on Mo Electrode

Thumbnail
2020
osnovni rad (3.935Mb)
Authors
Cvetković, Vesna S.
Feldhaus, Dominic
Vukićević, Nataša
Barudžija, Tanja
Friedrich, Bernd
Jovićević, Jovan N.
Article (Published version)
,
The Authors
Metadata
Show full item record
Abstract
Neodymium was electrochemically deposited from NdF3–LiF–Nd2O3 molten salt electrolyte onto the Mo electrode at temperatures close to 1273 K. Cyclic voltammetry and chronoamperometry measurements were the applied electrochemical methods. Metallic neodymium is obtained by potentiostatic deposition. The optical microscopy and XRD were used to analyze the electrolyte, the working electrode surface, and the deposit on the electrode. It was established that Nd(III) ions were reduced to Nd metals in two steps: Nd(III) + e− → Nd(II) at potential ≈−0.55 V vs. W and Nd(II) + 2e− → Nd(0) at ≈−0.83 V vs. W. Both of these processes are reversible and under mass transfer control. Upon deposition under the regime of relatively small deposition overpotential of −0.10 V to −0.20 V, and after the electrolyte was cooled off, Nd metal was observed at the surface of the Mo electrode. CO and CF4 were gases registered as being evolved at the anode. CO and CF4 evolution were observed in quantities below 600 p...pm and 10 ppm, respectively

Keywords:
fluoride melts / cyclic voltammetry / gas emission / neodymium electrodeposition
Source:
Metals, 2020, 10, 5, 576-
Publisher:
  • MDPI
Funding / projects:
  • Ministry of Education, Science and Technological Development of the Republic of Serbia
  • Ministry of Education, Science and Technological Development of the Republic of Serbia and German Academic Exchange Service (DAAD) - bilateral project (451-03-01971/2018-09/4)

DOI: 10.3390/met10050576

ISSN: 2075-4701

WoS: 000540220000024

Scopus: 2-s2.0-85084144759
[ Google Scholar ]
10
6
URI
https://cer.ihtm.bg.ac.rs/handle/123456789/3587
Collections
  • Radovi istraživača / Researchers' publications
Institution/Community
IHTM
TY  - JOUR
AU  - Cvetković, Vesna S.
AU  - Feldhaus, Dominic
AU  - Vukićević, Nataša
AU  - Barudžija, Tanja
AU  - Friedrich, Bernd
AU  - Jovićević, Jovan N.
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3587
AB  - Neodymium was electrochemically deposited from NdF3–LiF–Nd2O3 molten salt electrolyte onto the Mo electrode at temperatures close to 1273 K. Cyclic voltammetry and chronoamperometry measurements were the applied electrochemical methods. Metallic neodymium is obtained by potentiostatic deposition. The optical microscopy and XRD were used to analyze the electrolyte, the working electrode surface, and the deposit on the electrode. It was established that Nd(III) ions were reduced to Nd metals in two steps: Nd(III) + e− → Nd(II) at potential ≈−0.55 V vs. W and Nd(II) + 2e− → Nd(0) at ≈−0.83 V vs. W. Both of these processes are reversible and under mass transfer control. Upon deposition under the regime of relatively small deposition overpotential of −0.10 V to −0.20 V, and after the electrolyte was cooled off, Nd metal was observed at the surface of the Mo electrode. CO and CF4 were gases registered as being evolved at the anode. CO and CF4 evolution were observed in quantities below 600 ppm and 10 ppm, respectively
PB  - MDPI
T2  - Metals
T1  - Investigation on the Electrochemical Behaviour and Deposition Mechanism of Neodymium in NdF3–LiF–Nd2O3 Melt on Mo Electrode
VL  - 10
IS  - 5
SP  - 576
DO  - 10.3390/met10050576
ER  - 
@article{
author = "Cvetković, Vesna S. and Feldhaus, Dominic and Vukićević, Nataša and Barudžija, Tanja and Friedrich, Bernd and Jovićević, Jovan N.",
year = "2020",
abstract = "Neodymium was electrochemically deposited from NdF3–LiF–Nd2O3 molten salt electrolyte onto the Mo electrode at temperatures close to 1273 K. Cyclic voltammetry and chronoamperometry measurements were the applied electrochemical methods. Metallic neodymium is obtained by potentiostatic deposition. The optical microscopy and XRD were used to analyze the electrolyte, the working electrode surface, and the deposit on the electrode. It was established that Nd(III) ions were reduced to Nd metals in two steps: Nd(III) + e− → Nd(II) at potential ≈−0.55 V vs. W and Nd(II) + 2e− → Nd(0) at ≈−0.83 V vs. W. Both of these processes are reversible and under mass transfer control. Upon deposition under the regime of relatively small deposition overpotential of −0.10 V to −0.20 V, and after the electrolyte was cooled off, Nd metal was observed at the surface of the Mo electrode. CO and CF4 were gases registered as being evolved at the anode. CO and CF4 evolution were observed in quantities below 600 ppm and 10 ppm, respectively",
publisher = "MDPI",
journal = "Metals",
title = "Investigation on the Electrochemical Behaviour and Deposition Mechanism of Neodymium in NdF3–LiF–Nd2O3 Melt on Mo Electrode",
volume = "10",
number = "5",
pages = "576",
doi = "10.3390/met10050576"
}
Cvetković, V. S., Feldhaus, D., Vukićević, N., Barudžija, T., Friedrich, B.,& Jovićević, J. N.. (2020). Investigation on the Electrochemical Behaviour and Deposition Mechanism of Neodymium in NdF3–LiF–Nd2O3 Melt on Mo Electrode. in Metals
MDPI., 10(5), 576.
https://doi.org/10.3390/met10050576
Cvetković VS, Feldhaus D, Vukićević N, Barudžija T, Friedrich B, Jovićević JN. Investigation on the Electrochemical Behaviour and Deposition Mechanism of Neodymium in NdF3–LiF–Nd2O3 Melt on Mo Electrode. in Metals. 2020;10(5):576.
doi:10.3390/met10050576 .
Cvetković, Vesna S., Feldhaus, Dominic, Vukićević, Nataša, Barudžija, Tanja, Friedrich, Bernd, Jovićević, Jovan N., "Investigation on the Electrochemical Behaviour and Deposition Mechanism of Neodymium in NdF3–LiF–Nd2O3 Melt on Mo Electrode" in Metals, 10, no. 5 (2020):576,
https://doi.org/10.3390/met10050576 . .

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB