CER - Central Repository
Institute of Chemistry, Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction

Authorized Users Only
2020
Authors
Chung, Dong Young
Lopes, Pietro Papa
Farinazzo Bergamo Dias Martins, Pedro
He, Haiying
Kawaguchi, Tomoya
Zapol, Peter
You, Hoydoo
Tripković, Dušan
Strmcnik, Dusan
Zhu, Yisi
Seifert, Soenke
Lee, Sungsik
Stamenković, Vojislav
Marković, Nenad M.
Article (Published version)
,
Springer Nature
Metadata
Show full item record
Abstract
The poor activity and stability of electrode materials for the oxygen evolution reaction are the main bottlenecks in the water-splitting reaction for H2 production. Here, by studying the activity–stability trends for the oxygen evolution reaction on conductive M1OxHy, Fe–M1OxHy and Fe–M1M2OxHy hydr(oxy)oxide clusters (M1 = Ni, Co, Fe; M2 = Mn, Co, Cu), we show that balancing the rates of Fe dissolution and redeposition over a MOxHy host establishes dynamically stable Fe active sites. Together with tuning the Fe content of the electrolyte, the strong interaction of Fe with the MOxHy host is the key to controlling the average number of Fe active sites present at the solid/liquid interface. We suggest that the Fe–M adsorption energy can therefore serve as a reaction descriptor that unifies oxygen evolution reaction catalysis on 3d transition-metal hydr(oxy)oxides in alkaline media. Thus, the introduction of dynamically stable active sites extends the design rules for creating active and s...table interfaces.

Keywords:
Electrocatalysis / Hydrogen fuel / Solar fuels
Source:
Nature Energy, 2020, 5, 3, 222-230
Publisher:
  • Springer Science and Business Media LLC
Funding / projects:
  • US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357
Note:
  • The peer-reviewed version: https://cer.ihtm.bg.ac.rs/handle/123456789/3700

DOI: 10.1038/s41560-020-0576-y

ISSN: 2058-7546

WoS: 000520704000014

Scopus: 2-s2.0-85082113724
[ Google Scholar ]
393
175
URI
https://cer.ihtm.bg.ac.rs/handle/123456789/3485
Collections
  • Radovi istraživača / Researchers' publications
Institution/Community
IHTM
TY  - JOUR
AU  - Chung, Dong Young
AU  - Lopes, Pietro Papa
AU  - Farinazzo Bergamo Dias Martins, Pedro
AU  - He, Haiying
AU  - Kawaguchi, Tomoya
AU  - Zapol, Peter
AU  - You, Hoydoo
AU  - Tripković, Dušan
AU  - Strmcnik, Dusan
AU  - Zhu, Yisi
AU  - Seifert, Soenke
AU  - Lee, Sungsik
AU  - Stamenković, Vojislav
AU  - Marković, Nenad M.
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3485
AB  - The poor activity and stability of electrode materials for the oxygen evolution reaction are the main bottlenecks in the water-splitting reaction for H2 production. Here, by studying the activity–stability trends for the oxygen evolution reaction on conductive M1OxHy, Fe–M1OxHy and Fe–M1M2OxHy hydr(oxy)oxide clusters (M1 = Ni, Co, Fe; M2 = Mn, Co, Cu), we show that balancing the rates of Fe dissolution and redeposition over a MOxHy host establishes dynamically stable Fe active sites. Together with tuning the Fe content of the electrolyte, the strong interaction of Fe with the MOxHy host is the key to controlling the average number of Fe active sites present at the solid/liquid interface. We suggest that the Fe–M adsorption energy can therefore serve as a reaction descriptor that unifies oxygen evolution reaction catalysis on 3d transition-metal hydr(oxy)oxides in alkaline media. Thus, the introduction of dynamically stable active sites extends the design rules for creating active and stable interfaces.
PB  - Springer Science and Business Media LLC
T2  - Nature Energy
T1  - Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction
VL  - 5
IS  - 3
SP  - 222
EP  - 230
DO  - 10.1038/s41560-020-0576-y
ER  - 
@article{
author = "Chung, Dong Young and Lopes, Pietro Papa and Farinazzo Bergamo Dias Martins, Pedro and He, Haiying and Kawaguchi, Tomoya and Zapol, Peter and You, Hoydoo and Tripković, Dušan and Strmcnik, Dusan and Zhu, Yisi and Seifert, Soenke and Lee, Sungsik and Stamenković, Vojislav and Marković, Nenad M.",
year = "2020",
abstract = "The poor activity and stability of electrode materials for the oxygen evolution reaction are the main bottlenecks in the water-splitting reaction for H2 production. Here, by studying the activity–stability trends for the oxygen evolution reaction on conductive M1OxHy, Fe–M1OxHy and Fe–M1M2OxHy hydr(oxy)oxide clusters (M1 = Ni, Co, Fe; M2 = Mn, Co, Cu), we show that balancing the rates of Fe dissolution and redeposition over a MOxHy host establishes dynamically stable Fe active sites. Together with tuning the Fe content of the electrolyte, the strong interaction of Fe with the MOxHy host is the key to controlling the average number of Fe active sites present at the solid/liquid interface. We suggest that the Fe–M adsorption energy can therefore serve as a reaction descriptor that unifies oxygen evolution reaction catalysis on 3d transition-metal hydr(oxy)oxides in alkaline media. Thus, the introduction of dynamically stable active sites extends the design rules for creating active and stable interfaces.",
publisher = "Springer Science and Business Media LLC",
journal = "Nature Energy",
title = "Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction",
volume = "5",
number = "3",
pages = "222-230",
doi = "10.1038/s41560-020-0576-y"
}
Chung, D. Y., Lopes, P. P., Farinazzo Bergamo Dias Martins, P., He, H., Kawaguchi, T., Zapol, P., You, H., Tripković, D., Strmcnik, D., Zhu, Y., Seifert, S., Lee, S., Stamenković, V.,& Marković, N. M.. (2020). Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction. in Nature Energy
Springer Science and Business Media LLC., 5(3), 222-230.
https://doi.org/10.1038/s41560-020-0576-y
Chung DY, Lopes PP, Farinazzo Bergamo Dias Martins P, He H, Kawaguchi T, Zapol P, You H, Tripković D, Strmcnik D, Zhu Y, Seifert S, Lee S, Stamenković V, Marković NM. Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction. in Nature Energy. 2020;5(3):222-230.
doi:10.1038/s41560-020-0576-y .
Chung, Dong Young, Lopes, Pietro Papa, Farinazzo Bergamo Dias Martins, Pedro, He, Haiying, Kawaguchi, Tomoya, Zapol, Peter, You, Hoydoo, Tripković, Dušan, Strmcnik, Dusan, Zhu, Yisi, Seifert, Soenke, Lee, Sungsik, Stamenković, Vojislav, Marković, Nenad M., "Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction" in Nature Energy, 5, no. 3 (2020):222-230,
https://doi.org/10.1038/s41560-020-0576-y . .

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB