CER - Central Repository
Institute of Chemistry, Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Influence of peanut matrix on stability of allergens in gastric-simulated digesta: 2S albumins are main contributors to the IgE reactivity of short digestion-resistant peptides

Thumbnail
2018
Influence_of_peanut_acc_2018.pdf (1.481Mb)
Authors
Prodić, I.
Stanić-Vučinić, Dragana
Apostolovic, D.
Mihailović, Jelena
Radibratović, Milica
Radosavljevic, J.
Burazer, L.
Milčić, Miloš
Smiljanic, K.
van, Hage M.
Ćirković Veličković, Tanja
Article (Accepted Version)
Metadata
Show full item record
Abstract
BackgroundMost food allergens sensitizing via the gastrointestinal tract are stable proteins that are resistant to pepsin digestion, in particular major peanut allergens, Ara h 2 and Ara h 6. Survival of their large fragments is essential for sensitizing capacity. However, the immunoreactive proteins/peptides to which the immune system of the gastrointestinal tract is exposed during digestion of peanut proteins are unknown. Particularly, the IgE reactivity of short digestion-resistant peptides (SDRPs; LT 10kDa) released by gastric digestion under standardized and physiologically relevant invitro conditions has not been investigated. ObjectiveThe aim of this study was to investigate and identify digestion products of major peanut allergens and in particular to examine IgE reactivity of SDRPs released by pepsin digestion of whole peanut grains. MethodsTwo-dimensional gel-based proteomics and shotgun peptidomics, immunoblotting with allergen-specific antibodies from peanut-sensitized pat...ients, enzyme-linked immunosorbent inhibition assay and ImmunoCAP tests, including far ultraviolet-circular dichroism spectroscopy were used to identify and characterize peanut digesta. ResultsAra h 2 and Ara h 6 remained mostly intact, and SDRPs from Ara h 2 were more potent in inhibiting IgE binding than Ara h 1 and Ara 3. Ara h 1 and Ara h 3 exhibited sequential digestion into a series of digestion-resistant peptides with preserved allergenic capacity. A high number of identified SDRPs from Ara h 1, Ara h 2 and Ara h 3 were part of short continuous epitope sequences and possessed substantial allergenic potential. Conclusion and Clinical RelevancePeanut grain digestion by oral and gastric phase enzymes generates mixture of products, where the major peanut allergens remain intact and their digested peptides have preserved allergenic capacity highlighting their important roles in allergic reactions to peanut.

Keywords:
digestion-resistant peptides / food matrix / gastric-simulated digestion / peanut allergy / proteolysis resistance
Source:
Clinical and Experimental Allergy, 2018, 48, 6, 731-740
Publisher:
  • Wiley, Hoboken
Funding / projects:
  • Molecular properties and modifications of some respiratory and nutritional allergens (RS-172024)
Note:
  • This is peer-reviewed version of the following article: Prodic, I.; Stanic-Vucinic, D.; Apostolovic, D.; Mihailovic, J.; Radibratovic, M.; Radosavljevic, J.; Burazer, L.; Milcic, M.; Smiljanic, K.; van Hage, M.; et al. Influence of Peanut Matrix on Stability of Allergens in Gastric-Simulated Digesta: 2S Albumins Are Main Contributors to the IgE Reactivity of Short Digestion-Resistant Peptides. Clinical and Experimental Allergy 2018, 48 (6), 731–740. https://doi.org/10.1111/cea.13113
  • The published version: http://cer.ihtm.bg.ac.rs/handle/123456789/2299

DOI: 10.1111/cea.13113

ISSN: 0954-7894

PubMed: 29412488

WoS: 000434080100013

Scopus: 2-s2.0-85043571987
[ Google Scholar ]
32
24
URI
https://cer.ihtm.bg.ac.rs/handle/123456789/3340
Collections
  • Radovi istraživača / Researchers' publications
Institution/Community
IHTM
TY  - JOUR
AU  - Prodić, I.
AU  - Stanić-Vučinić, Dragana
AU  - Apostolovic, D.
AU  - Mihailović, Jelena
AU  - Radibratović, Milica
AU  - Radosavljevic, J.
AU  - Burazer, L.
AU  - Milčić, Miloš
AU  - Smiljanic, K.
AU  - van, Hage M.
AU  - Ćirković Veličković, Tanja
PY  - 2018
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3340
AB  - BackgroundMost food allergens sensitizing via the gastrointestinal tract are stable proteins that are resistant to pepsin digestion, in particular major peanut allergens, Ara h 2 and Ara h 6. Survival of their large fragments is essential for sensitizing capacity. However, the immunoreactive proteins/peptides to which the immune system of the gastrointestinal tract is exposed during digestion of peanut proteins are unknown. Particularly, the IgE reactivity of short digestion-resistant peptides (SDRPs;  LT 10kDa) released by gastric digestion under standardized and physiologically relevant invitro conditions has not been investigated. ObjectiveThe aim of this study was to investigate and identify digestion products of major peanut allergens and in particular to examine IgE reactivity of SDRPs released by pepsin digestion of whole peanut grains. MethodsTwo-dimensional gel-based proteomics and shotgun peptidomics, immunoblotting with allergen-specific antibodies from peanut-sensitized patients, enzyme-linked immunosorbent inhibition assay and ImmunoCAP tests, including far ultraviolet-circular dichroism spectroscopy were used to identify and characterize peanut digesta. ResultsAra h 2 and Ara h 6 remained mostly intact, and SDRPs from Ara h 2 were more potent in inhibiting IgE binding than Ara h 1 and Ara 3. Ara h 1 and Ara h 3 exhibited sequential digestion into a series of digestion-resistant peptides with preserved allergenic capacity. A high number of identified SDRPs from Ara h 1, Ara h 2 and Ara h 3 were part of short continuous epitope sequences and possessed substantial allergenic potential. Conclusion and Clinical RelevancePeanut grain digestion by oral and gastric phase enzymes generates mixture of products, where the major peanut allergens remain intact and their digested peptides have preserved allergenic capacity highlighting their important roles in allergic reactions to peanut.
PB  - Wiley, Hoboken
T2  - Clinical and Experimental Allergy
T1  - Influence of peanut matrix on stability of allergens in gastric-simulated digesta: 2S albumins are main contributors to the IgE reactivity of short digestion-resistant peptides
VL  - 48
IS  - 6
SP  - 731
EP  - 740
DO  - 10.1111/cea.13113
ER  - 
@article{
author = "Prodić, I. and Stanić-Vučinić, Dragana and Apostolovic, D. and Mihailović, Jelena and Radibratović, Milica and Radosavljevic, J. and Burazer, L. and Milčić, Miloš and Smiljanic, K. and van, Hage M. and Ćirković Veličković, Tanja",
year = "2018",
abstract = "BackgroundMost food allergens sensitizing via the gastrointestinal tract are stable proteins that are resistant to pepsin digestion, in particular major peanut allergens, Ara h 2 and Ara h 6. Survival of their large fragments is essential for sensitizing capacity. However, the immunoreactive proteins/peptides to which the immune system of the gastrointestinal tract is exposed during digestion of peanut proteins are unknown. Particularly, the IgE reactivity of short digestion-resistant peptides (SDRPs;  LT 10kDa) released by gastric digestion under standardized and physiologically relevant invitro conditions has not been investigated. ObjectiveThe aim of this study was to investigate and identify digestion products of major peanut allergens and in particular to examine IgE reactivity of SDRPs released by pepsin digestion of whole peanut grains. MethodsTwo-dimensional gel-based proteomics and shotgun peptidomics, immunoblotting with allergen-specific antibodies from peanut-sensitized patients, enzyme-linked immunosorbent inhibition assay and ImmunoCAP tests, including far ultraviolet-circular dichroism spectroscopy were used to identify and characterize peanut digesta. ResultsAra h 2 and Ara h 6 remained mostly intact, and SDRPs from Ara h 2 were more potent in inhibiting IgE binding than Ara h 1 and Ara 3. Ara h 1 and Ara h 3 exhibited sequential digestion into a series of digestion-resistant peptides with preserved allergenic capacity. A high number of identified SDRPs from Ara h 1, Ara h 2 and Ara h 3 were part of short continuous epitope sequences and possessed substantial allergenic potential. Conclusion and Clinical RelevancePeanut grain digestion by oral and gastric phase enzymes generates mixture of products, where the major peanut allergens remain intact and their digested peptides have preserved allergenic capacity highlighting their important roles in allergic reactions to peanut.",
publisher = "Wiley, Hoboken",
journal = "Clinical and Experimental Allergy",
title = "Influence of peanut matrix on stability of allergens in gastric-simulated digesta: 2S albumins are main contributors to the IgE reactivity of short digestion-resistant peptides",
volume = "48",
number = "6",
pages = "731-740",
doi = "10.1111/cea.13113"
}
Prodić, I., Stanić-Vučinić, D., Apostolovic, D., Mihailović, J., Radibratović, M., Radosavljevic, J., Burazer, L., Milčić, M., Smiljanic, K., van, H. M.,& Ćirković Veličković, T.. (2018). Influence of peanut matrix on stability of allergens in gastric-simulated digesta: 2S albumins are main contributors to the IgE reactivity of short digestion-resistant peptides. in Clinical and Experimental Allergy
Wiley, Hoboken., 48(6), 731-740.
https://doi.org/10.1111/cea.13113
Prodić I, Stanić-Vučinić D, Apostolovic D, Mihailović J, Radibratović M, Radosavljevic J, Burazer L, Milčić M, Smiljanic K, van HM, Ćirković Veličković T. Influence of peanut matrix on stability of allergens in gastric-simulated digesta: 2S albumins are main contributors to the IgE reactivity of short digestion-resistant peptides. in Clinical and Experimental Allergy. 2018;48(6):731-740.
doi:10.1111/cea.13113 .
Prodić, I., Stanić-Vučinić, Dragana, Apostolovic, D., Mihailović, Jelena, Radibratović, Milica, Radosavljevic, J., Burazer, L., Milčić, Miloš, Smiljanic, K., van, Hage M., Ćirković Veličković, Tanja, "Influence of peanut matrix on stability of allergens in gastric-simulated digesta: 2S albumins are main contributors to the IgE reactivity of short digestion-resistant peptides" in Clinical and Experimental Allergy, 48, no. 6 (2018):731-740,
https://doi.org/10.1111/cea.13113 . .

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB