Show simple item record

dc.creatorPopović, Slađana
dc.creatorNikolić, Nataša
dc.creatorJovanović, Jelena
dc.creatorPredojević, Dragana
dc.creatorTrbojević, Ivana
dc.creatorManić, Ljiljana
dc.creatorSubakov-Simić, Gordana
dc.date.accessioned2019-09-09T12:01:30Z
dc.date.available2019-09-09T12:01:30Z
dc.date.issued2019
dc.identifier.issn0392-6672
dc.identifier.issn1827-806X
dc.identifier.urihttp://cer.ihtm.bg.ac.rs/handle/123456789/3067
dc.description.abstractDue to life in extreme environments, cyanobacteria and algae from cave biofilms that form at the entrances or deep inside the cave around artificial lights are of increasing interest to many scientists. It is well-known that many phototrophic microorganisms are first to colonize exposed substrata and produce the organic matter on which other biofilm constituents relly. Many studies dealing with phototrophic microorganisms from biofilms focus on the diversity and community composition of cyanobacteria and algae, while quantitative assessments are rarely implemented. Biofilm sampling was conducted in Degurić and Vernjikica Cave located in Western and Eastern Serbia, respectively. Ecological parameters (temperature, relative humidity, light intensity) and distance from the entrance were measured. Additionally, chlorophyll content, as well as biofilm parameters (water content, organic and inorganic matter) were determined. The abundance of phototrophic microorganisms was assessed on microscope slides which contained 1 mg of biofilm that was dehydrated for a short period of time and homogenized prior to slide preparation, and then rehydratated. The biomass of recorded cyanobacterial and algal taxa was calculated by applying geometric approximations and standard mathematical formulas. In Degurić Cave, at the sampling site where the highest biomass was documented, the higher diversity, water content and chlorophyll values were also recorded, while in Vernjikica Cave a high content of organic matter was documented. According to the multivariate analyses performed, the biomass of simple trichal Cyanobacteria, Bacillariophyta, and Xanthophyta was positively correlated with the content of organic matter in biofilm and light intensity, while coccoid and heterocytous Cyanobacteria and Chlorophyta showed a positive correlation with water content in the biofilm, relative humidity and distance from the entrance. The total biomass was positively correlated with the chlorophyll content, organic matter and light intensity, and negatively with the distance from the entrance.
dc.publisherUniversity of South Florida Libraries
dc.relationinfo:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/176018/RS//
dc.relationinfo:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/176020/RS//
dc.rightsopenAccess
dc.sourceInternational Journal of Speleology
dc.subjectcyanobacterial and algal biomass
dc.subjectcave biofilms
dc.subjectEnvironmental parameters
dc.subjectbiofilm parameters
dc.titleCyanobacterial and algal abundance and biomass in cave biofilms and relation to environmental and biofilm parameters
dc.typearticleen
dc.rights.licenseBY-NC
dcterms.abstractНиколић, Наташа; Поповић, Слађана; Трбојевић, Ивана; Субаков Симић, Гордана; Јовановић, Јелена; Предојевић, Драгана; Манић, Љиљана;
dc.rights.holderThe authors
dc.citation.volume48
dc.citation.issue1
dc.citation.spage49
dc.citation.epage61
dc.citation.rankM23~
dc.identifier.doi10.5038/1827-806X.48.1.2224
dc.identifier.fulltexthttp://cer.ihtm.bg.ac.rs/bitstream/id/13755/bitstream_13755.pdf
dc.identifier.scopus2-s2.0-85065642345
dc.identifier.wos000462015000005
dc.type.versionpublishedVersion


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record