CER - Central Repository
Institute of Chemistry, Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

What Is the Nature of Interactions of BF4–, NO3–, and ClO4– to Cu(II) Complexes with Girard’s T Hydrazine? When Can Binuclear Complexes Be Formed?

Authorized Users Only
2019
Authors
Keškić, Tanja
Čobeljić, Božidar
Gruden, Maja
Anđelković, Katarina
Pevec, Andrej
Turel, Iztok
Radanović, Dušanka
Zlatar, Matija
Article (Published version)
,
American Chemical Society (ACS)
Metadata
Show full item record
Abstract
In solid-state coordination chemistry, the coordination number of a metal center is not always unambiguously determined, as sometimes from the geometrical parameters it is not clear if ligands are directly bound to the central metal ion or they belong to the outer sphere of a complex. The nature of bonding between Cu(II) and weakly coordinated anions BF4–, NO3–, and ClO4– is investigated by the combined crystallographic and computational study. It is shown that the synergy between the crystal structure determination and computational chemistry allows identification of all interactions present in crystals. Three new complexes, [CuLCl]BF4 (1), [CuLCl]NO3 (2), and [Cu2L2Cl2](BF4)2 (3) with the same [CuLCl]+ moiety (L = (E)-N,N,N-trimethyl-2-oxo-2-(2-(1-(pyridin-2-yl)ethylidene)hydrazinyl)ethan-1-amin), were synthesized and characterized by single crystal X-ray diffraction methods and compared to the previously reported [CuLCl]ClO4 (4). Energy decomposition analysis, noncovalent interactio...n index analysis, independent gradient model, and the quantum theory of atoms in molecules are performed on the X-ray structures of these four complexes. The results revealed that in 1, 2, and 4, BF4–, NO3–, and ClO4– are weakly, but directly coordinated to the Cu(II) with bonds having high electrostatic character. In 3, BF4– is the counter-anion, electrostatically bonded to the L. Furthermore, the present analysis rationalized the fact that only complex 3 is binuclear with bridging Cl– ions.

Keywords:
DFT / X-ray / non-covalent interactions / Energy Decomposition Analysis / coordination chemistry / chemical bonding / coordination bonds / counter-ions / dimers / non-covalent interaction index analysis / independent gradient model
Source:
Crystal Growth & Design, 2019, 19, 4810-4821
Publisher:
  • American Chemical Society (ACS)
Funding / projects:
  • Rational design and synthesis of biologically active and coordination compounds and functional materials, relevant for (bio)nanotechnology (RS-172035)
  • Interactions of natural products, their derivatives and coordination compounds with proteins and nucleic acids (RS-172055)
  • Slovenian Research Agency (P-0175)
Note:
  • The peer-reviewed version: http://cer.ihtm.bg.ac.rs/handle/123456789/3047
  • Supporting information: https://cer.ihtm.bg.ac.rs/handle/123456789/4460
  • Crystallographic data (CCDC 1917721): https://cer.ihtm.bg.ac.rs/handle/123456789/4461
  • Crystallographic data (CCDC 1917722): https://cer.ihtm.bg.ac.rs/handle/123456789/4462
  • Crystallographic data (CCDC 1917723): https://cer.ihtm.bg.ac.rs/handle/123456789/4463
Related info:
  • Version of
    https://cer.ihtm.bg.ac.rs/handle/123456789/3047
  • Referenced by
    https://cer.ihtm.bg.ac.rs/handle/123456789/4460
  • Referenced by
    https://cer.ihtm.bg.ac.rs/handle/123456789/4461
  • Referenced by
    https://cer.ihtm.bg.ac.rs/handle/123456789/4462
  • Referenced by
    https://cer.ihtm.bg.ac.rs/handle/123456789/4463

DOI: 10.1021/acs.cgd.9b00760

ISSN: 1528-7483; 1528-7505

WoS: 000480499600066

Scopus: 2-s2.0-85070665532
[ Google Scholar ]
9
9
URI
https://cer.ihtm.bg.ac.rs/handle/123456789/3051
Collections
  • Radovi istraživača / Researchers' publications
Institution/Community
IHTM
TY  - JOUR
AU  - Keškić, Tanja
AU  - Čobeljić, Božidar
AU  - Gruden, Maja
AU  - Anđelković, Katarina
AU  - Pevec, Andrej
AU  - Turel, Iztok
AU  - Radanović, Dušanka
AU  - Zlatar, Matija
PY  - 2019
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3051
AB  - In solid-state coordination chemistry, the coordination number of a metal center is not always unambiguously determined, as sometimes from the geometrical parameters it is not clear if ligands are directly bound to the central metal ion or they belong to the outer sphere of a complex. The nature of bonding between Cu(II) and weakly coordinated anions BF4–, NO3–, and ClO4– is investigated by the combined crystallographic and computational study. It is shown that the synergy between the crystal structure determination and computational chemistry allows identification of all interactions present in crystals. Three new complexes, [CuLCl]BF4 (1), [CuLCl]NO3 (2), and [Cu2L2Cl2](BF4)2 (3) with the same [CuLCl]+ moiety (L = (E)-N,N,N-trimethyl-2-oxo-2-(2-(1-(pyridin-2-yl)ethylidene)hydrazinyl)ethan-1-amin), were synthesized and characterized by single crystal X-ray diffraction methods and compared to the previously reported [CuLCl]ClO4 (4). Energy decomposition analysis, noncovalent interaction index analysis, independent gradient model, and the quantum theory of atoms in molecules are performed on the X-ray structures of these four complexes. The results revealed that in 1, 2, and 4, BF4–, NO3–, and ClO4– are weakly, but directly coordinated to the Cu(II) with bonds having high electrostatic character. In 3, BF4– is the counter-anion, electrostatically bonded to the L. Furthermore, the present analysis rationalized the fact that only complex 3 is binuclear with bridging Cl– ions.
PB  - American Chemical Society (ACS)
T2  - Crystal Growth & Design
T1  - What Is the Nature of Interactions of BF4–, NO3–, and ClO4– to Cu(II) Complexes with Girard’s T Hydrazine? When Can Binuclear Complexes Be Formed?
VL  - 19
SP  - 4810
EP  - 4821
DO  - 10.1021/acs.cgd.9b00760
ER  - 
@article{
author = "Keškić, Tanja and Čobeljić, Božidar and Gruden, Maja and Anđelković, Katarina and Pevec, Andrej and Turel, Iztok and Radanović, Dušanka and Zlatar, Matija",
year = "2019",
abstract = "In solid-state coordination chemistry, the coordination number of a metal center is not always unambiguously determined, as sometimes from the geometrical parameters it is not clear if ligands are directly bound to the central metal ion or they belong to the outer sphere of a complex. The nature of bonding between Cu(II) and weakly coordinated anions BF4–, NO3–, and ClO4– is investigated by the combined crystallographic and computational study. It is shown that the synergy between the crystal structure determination and computational chemistry allows identification of all interactions present in crystals. Three new complexes, [CuLCl]BF4 (1), [CuLCl]NO3 (2), and [Cu2L2Cl2](BF4)2 (3) with the same [CuLCl]+ moiety (L = (E)-N,N,N-trimethyl-2-oxo-2-(2-(1-(pyridin-2-yl)ethylidene)hydrazinyl)ethan-1-amin), were synthesized and characterized by single crystal X-ray diffraction methods and compared to the previously reported [CuLCl]ClO4 (4). Energy decomposition analysis, noncovalent interaction index analysis, independent gradient model, and the quantum theory of atoms in molecules are performed on the X-ray structures of these four complexes. The results revealed that in 1, 2, and 4, BF4–, NO3–, and ClO4– are weakly, but directly coordinated to the Cu(II) with bonds having high electrostatic character. In 3, BF4– is the counter-anion, electrostatically bonded to the L. Furthermore, the present analysis rationalized the fact that only complex 3 is binuclear with bridging Cl– ions.",
publisher = "American Chemical Society (ACS)",
journal = "Crystal Growth & Design",
title = "What Is the Nature of Interactions of BF4–, NO3–, and ClO4– to Cu(II) Complexes with Girard’s T Hydrazine? When Can Binuclear Complexes Be Formed?",
volume = "19",
pages = "4810-4821",
doi = "10.1021/acs.cgd.9b00760"
}
Keškić, T., Čobeljić, B., Gruden, M., Anđelković, K., Pevec, A., Turel, I., Radanović, D.,& Zlatar, M.. (2019). What Is the Nature of Interactions of BF4–, NO3–, and ClO4– to Cu(II) Complexes with Girard’s T Hydrazine? When Can Binuclear Complexes Be Formed?. in Crystal Growth & Design
American Chemical Society (ACS)., 19, 4810-4821.
https://doi.org/10.1021/acs.cgd.9b00760
Keškić T, Čobeljić B, Gruden M, Anđelković K, Pevec A, Turel I, Radanović D, Zlatar M. What Is the Nature of Interactions of BF4–, NO3–, and ClO4– to Cu(II) Complexes with Girard’s T Hydrazine? When Can Binuclear Complexes Be Formed?. in Crystal Growth & Design. 2019;19:4810-4821.
doi:10.1021/acs.cgd.9b00760 .
Keškić, Tanja, Čobeljić, Božidar, Gruden, Maja, Anđelković, Katarina, Pevec, Andrej, Turel, Iztok, Radanović, Dušanka, Zlatar, Matija, "What Is the Nature of Interactions of BF4–, NO3–, and ClO4– to Cu(II) Complexes with Girard’s T Hydrazine? When Can Binuclear Complexes Be Formed?" in Crystal Growth & Design, 19 (2019):4810-4821,
https://doi.org/10.1021/acs.cgd.9b00760 . .

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB