Peroxidase-Sensitive Tyramine Carboxymethyl Xylan Hydrogels for Enzyme Encapsulation
Authorized Users Only
2019
Authors
Spasojević, DragicaProkopijević, Miloš
Prodanović, Olivera

Zelenović, Nevena

Polović, Natalija

Radotić, Ksenija

Prodanović, Radivoje

Article (Published version)

Springer
Metadata
Show full item recordAbstract
Derivatives of xylans were synthesized from corncob xylan by carboxymethylation, oxidization with different molar ratios of periodate (5, 10 15 and 20 mol%) and by reductive amination with tyramine. Modifications of tyramine carboxymethyl xylans (Tyr-CMX) were confirmed by FTIR, UV and NMR spectra. Concentration of ionizable groups increased from 1.5 mmol/g for carboxymethyl xylan (CMX) to 5.4 mmol/g for Tyr-CMX oxidized with 20 mol% of periodate. All Tyr-CMXs were able to form hydrogels the cross-linking reaction with horseradish peroxidase and peroxide. Tyr-CMXs were tested for amyloglucosidase (AG) encapsulation within hydrogel microbeads obtained in a reaction of emulsion polymerization with peroxidase. Average diameter of Tyr-CMX hydrogel microbeads was 52±25 µm and after encapsulation optimization with respect to the extent of CMX modification with tyramine, the concentration of Tyr-CMX, and the amount of added AG, microbeads with AG specific activity of 2 U/mL and 20% yield of i...mmobilization were obtained. The optimum pH of the immobilized AG was not changed compared to the soluble one, while half-life at 60 °C was increased around 10 times. The Michaelis-Menten constant for the immobilized enzyme, 1.03 mM, was significantly lower than that for the soluble one, 1.54 mM. After 5 cycles of repetitive use in batch reactor, the immobilized AG retained 68% of initial activity.
Keywords:
xylan / hydrogel / tyramine / polymerization / emulsion / peroxideSource:
Macromolecular Research, 2019, 27, 8, 764-771Publisher:
- Springer
Funding / projects:
- Study of structure-function relationships in the plant cell wall and modifications of the wall structure by enzyme engineering (RS-173017)
- Allergens, antibodies, enzymes and small physiologically important molecules: design, structure, function and relevance (RS-172049)
DOI: 10.1007/s13233-019-7111-7
ISSN: 1598-5032; 2092-7673
WoS: 000482406900005
Scopus: 2-s2.0-85065978831
Collections
Institution/Community
IHTMTY - JOUR AU - Spasojević, Dragica AU - Prokopijević, Miloš AU - Prodanović, Olivera AU - Zelenović, Nevena AU - Polović, Natalija AU - Radotić, Ksenija AU - Prodanović, Radivoje PY - 2019 UR - https://cer.ihtm.bg.ac.rs/handle/123456789/3028 AB - Derivatives of xylans were synthesized from corncob xylan by carboxymethylation, oxidization with different molar ratios of periodate (5, 10 15 and 20 mol%) and by reductive amination with tyramine. Modifications of tyramine carboxymethyl xylans (Tyr-CMX) were confirmed by FTIR, UV and NMR spectra. Concentration of ionizable groups increased from 1.5 mmol/g for carboxymethyl xylan (CMX) to 5.4 mmol/g for Tyr-CMX oxidized with 20 mol% of periodate. All Tyr-CMXs were able to form hydrogels the cross-linking reaction with horseradish peroxidase and peroxide. Tyr-CMXs were tested for amyloglucosidase (AG) encapsulation within hydrogel microbeads obtained in a reaction of emulsion polymerization with peroxidase. Average diameter of Tyr-CMX hydrogel microbeads was 52±25 µm and after encapsulation optimization with respect to the extent of CMX modification with tyramine, the concentration of Tyr-CMX, and the amount of added AG, microbeads with AG specific activity of 2 U/mL and 20% yield of immobilization were obtained. The optimum pH of the immobilized AG was not changed compared to the soluble one, while half-life at 60 °C was increased around 10 times. The Michaelis-Menten constant for the immobilized enzyme, 1.03 mM, was significantly lower than that for the soluble one, 1.54 mM. After 5 cycles of repetitive use in batch reactor, the immobilized AG retained 68% of initial activity. PB - Springer T2 - Macromolecular Research T1 - Peroxidase-Sensitive Tyramine Carboxymethyl Xylan Hydrogels for Enzyme Encapsulation VL - 27 IS - 8 SP - 764 EP - 771 DO - 10.1007/s13233-019-7111-7 ER -
@article{ author = "Spasojević, Dragica and Prokopijević, Miloš and Prodanović, Olivera and Zelenović, Nevena and Polović, Natalija and Radotić, Ksenija and Prodanović, Radivoje", year = "2019", abstract = "Derivatives of xylans were synthesized from corncob xylan by carboxymethylation, oxidization with different molar ratios of periodate (5, 10 15 and 20 mol%) and by reductive amination with tyramine. Modifications of tyramine carboxymethyl xylans (Tyr-CMX) were confirmed by FTIR, UV and NMR spectra. Concentration of ionizable groups increased from 1.5 mmol/g for carboxymethyl xylan (CMX) to 5.4 mmol/g for Tyr-CMX oxidized with 20 mol% of periodate. All Tyr-CMXs were able to form hydrogels the cross-linking reaction with horseradish peroxidase and peroxide. Tyr-CMXs were tested for amyloglucosidase (AG) encapsulation within hydrogel microbeads obtained in a reaction of emulsion polymerization with peroxidase. Average diameter of Tyr-CMX hydrogel microbeads was 52±25 µm and after encapsulation optimization with respect to the extent of CMX modification with tyramine, the concentration of Tyr-CMX, and the amount of added AG, microbeads with AG specific activity of 2 U/mL and 20% yield of immobilization were obtained. The optimum pH of the immobilized AG was not changed compared to the soluble one, while half-life at 60 °C was increased around 10 times. The Michaelis-Menten constant for the immobilized enzyme, 1.03 mM, was significantly lower than that for the soluble one, 1.54 mM. After 5 cycles of repetitive use in batch reactor, the immobilized AG retained 68% of initial activity.", publisher = "Springer", journal = "Macromolecular Research", title = "Peroxidase-Sensitive Tyramine Carboxymethyl Xylan Hydrogels for Enzyme Encapsulation", volume = "27", number = "8", pages = "764-771", doi = "10.1007/s13233-019-7111-7" }
Spasojević, D., Prokopijević, M., Prodanović, O., Zelenović, N., Polović, N., Radotić, K.,& Prodanović, R.. (2019). Peroxidase-Sensitive Tyramine Carboxymethyl Xylan Hydrogels for Enzyme Encapsulation. in Macromolecular Research Springer., 27(8), 764-771. https://doi.org/10.1007/s13233-019-7111-7
Spasojević D, Prokopijević M, Prodanović O, Zelenović N, Polović N, Radotić K, Prodanović R. Peroxidase-Sensitive Tyramine Carboxymethyl Xylan Hydrogels for Enzyme Encapsulation. in Macromolecular Research. 2019;27(8):764-771. doi:10.1007/s13233-019-7111-7 .
Spasojević, Dragica, Prokopijević, Miloš, Prodanović, Olivera, Zelenović, Nevena, Polović, Natalija, Radotić, Ksenija, Prodanović, Radivoje, "Peroxidase-Sensitive Tyramine Carboxymethyl Xylan Hydrogels for Enzyme Encapsulation" in Macromolecular Research, 27, no. 8 (2019):764-771, https://doi.org/10.1007/s13233-019-7111-7 . .