CER - Central Repository
Institute of Chemistry, Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrilic)
    • Serbian (Latin)
  • Login
View Item 
  •   Central Repository
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
  •   Central Repository
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Biodegradation of poly(ε-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil

Thumbnail
2019
10.1016_j.polymdegradstab.2019.02.012.pdf (1.419Mb)
Authors
Mandic, Mina
Spasic, Jelena
Ponjavic, Marijana
Nikolic, Marija S.
Ćosović, Vladan
O'Connor, Kevin E.
Nikodinović-Runić, Jasmina
Đokić, Lidija
Jeremić, Sanja
Article (Accepted Version)
,
Elsevier BV
Metadata
Show full item record
Abstract
Petrochemical plastics are generally recalcitrant to microbial degradation and accumulate in the environment. Biodegradable polymers obtained synthetically like poly(ε-caprolactone) (PCL) or polyhydroxyalkanoates (PHA), obtained biotechnologically, have shown great potential as a replacement for petroleum-based plastics. Nevertheless, their biodegradation and environmental faith have been less examined. In this study, thin films of PCL (200 μm) and medium chain length PHA (mcl-PHA, 70 M fraction of 3-hydroxyoctanoate and 30 M fraction of 3-hydroxydecanoate, 600 μm) were exposed to total protein preparations (extracellular proteins combined with a crude cell extract) of soil isolates Pseudomonas chlororaphis B-561 and Streptomyces sp. BV315 that had been grown on waste cooking oil as a sole carbon source. Biodegradation potential of two polyesters was evaluated in buffer with total protein preparations and in a laboratory compost model system augmented with selected bacteria. Overall, P...CL showed better biodegradation properties in comparison to mcl-PHA. Both materials showed surface erosion after 4-weeks of exposure to total protein preparations of both strains, with a moderate weight loss of 1.3% when P. chlororaphis B-561 was utilized. In laboratory compost model system PCL and mcl-PHA showed significant weight loss ranging from 13 to 17% when Streptomyces sp. BV315 culture was used. Similar weight loss of PCL and mcl-PHA was achieved for 4 and 8 weeks, respectively indicating slower degradation of mcl-PHA. Growth on waste cooking oil as a sole carbon source increased the potential of both tested strains to degrade PCL and mcl-PHA, making them good candidates for augmentation of compost cultures in waste management of both waste cooking oils and biodegradable polymers.

Keywords:
Biopolymers / Enzymes / Pseudomonas / Streptomyces / Biodegradation / Compost
Source:
Polymer Degradation and Stability, 2019, 162, 160-168
Publisher:
  • Elsevier BV
Projects:
  • Microbial diversity study and characterization of beneficial environmental microorganisms (RS-173048)
  • Synthesis and characterization of novel functional polymers and polymeric nanocomposites (RS-172062)
Note:
  • This is peer-reviewed version of the article: Mandic M, Spasic J, Ponjavic M, Nikolic MS, Cosovic VR, O'Connor KE, Nikodinovic-Runic J, Djokic L, Jeremic S, Biodegradation of poly(ε-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil, Polymer Degradation and Stability, 2019, 162, 160-168, https://doi.org/10.1016/j.polymdegradstab.2019.02.012
  • http://cer.ihtm.bg.ac.rs/handle/123456789/2955

DOI: 10.1016/j.polymdegradstab.2019.02.012

ISSN: 0141-3910

WoS: 000465055500019

Scopus: 2-s2.0-85062047760
[ Google Scholar ]
3
2
URI
http://cer.ihtm.bg.ac.rs/handle/123456789/2956
Collections
  • Radovi istraživača / Researchers' publications
Institution
IHTM
TY  - JOUR
AU  - Mandic, Mina
AU  - Spasic, Jelena
AU  - Ponjavic, Marijana
AU  - Nikolic, Marija S.
AU  - Ćosović, Vladan
AU  - O'Connor, Kevin E.
AU  - Nikodinović-Runić, Jasmina
AU  - Đokić, Lidija
AU  - Jeremić, Sanja
PY  - 2019
UR  - http://cer.ihtm.bg.ac.rs/handle/123456789/2956
AB  - Petrochemical plastics are generally recalcitrant to microbial degradation and accumulate in the environment. Biodegradable polymers obtained synthetically like poly(ε-caprolactone) (PCL) or polyhydroxyalkanoates (PHA), obtained biotechnologically, have shown great potential as a replacement for petroleum-based plastics. Nevertheless, their biodegradation and environmental faith have been less examined. In this study, thin films of PCL (200 μm) and medium chain length PHA (mcl-PHA, 70 M fraction of 3-hydroxyoctanoate and 30 M fraction of 3-hydroxydecanoate, 600 μm) were exposed to total protein preparations (extracellular proteins combined with a crude cell extract) of soil isolates Pseudomonas chlororaphis B-561 and Streptomyces sp. BV315 that had been grown on waste cooking oil as a sole carbon source. Biodegradation potential of two polyesters was evaluated in buffer with total protein preparations and in a laboratory compost model system augmented with selected bacteria. Overall, PCL showed better biodegradation properties in comparison to mcl-PHA. Both materials showed surface erosion after 4-weeks of exposure to total protein preparations of both strains, with a moderate weight loss of 1.3% when P. chlororaphis B-561 was utilized. In laboratory compost model system PCL and mcl-PHA showed significant weight loss ranging from 13 to 17% when Streptomyces sp. BV315 culture was used. Similar weight loss of PCL and mcl-PHA was achieved for 4 and 8 weeks, respectively indicating slower degradation of mcl-PHA. Growth on waste cooking oil as a sole carbon source increased the potential of both tested strains to degrade PCL and mcl-PHA, making them good candidates for augmentation of compost cultures in waste management of both waste cooking oils and biodegradable polymers.
PB  - Elsevier BV
T2  - Polymer Degradation and Stability
T1  - Biodegradation of poly(ε-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil
VL  - 162
SP  - 160
EP  - 168
DO  - 10.1016/j.polymdegradstab.2019.02.012
ER  - 
@article{
author = "Mandic, Mina and Spasic, Jelena and Ponjavic, Marijana and Nikolic, Marija S. and Ćosović, Vladan and O'Connor, Kevin E. and Nikodinović-Runić, Jasmina and Đokić, Lidija and Jeremić, Sanja",
year = "2019",
url = "http://cer.ihtm.bg.ac.rs/handle/123456789/2956",
abstract = "Petrochemical plastics are generally recalcitrant to microbial degradation and accumulate in the environment. Biodegradable polymers obtained synthetically like poly(ε-caprolactone) (PCL) or polyhydroxyalkanoates (PHA), obtained biotechnologically, have shown great potential as a replacement for petroleum-based plastics. Nevertheless, their biodegradation and environmental faith have been less examined. In this study, thin films of PCL (200 μm) and medium chain length PHA (mcl-PHA, 70 M fraction of 3-hydroxyoctanoate and 30 M fraction of 3-hydroxydecanoate, 600 μm) were exposed to total protein preparations (extracellular proteins combined with a crude cell extract) of soil isolates Pseudomonas chlororaphis B-561 and Streptomyces sp. BV315 that had been grown on waste cooking oil as a sole carbon source. Biodegradation potential of two polyesters was evaluated in buffer with total protein preparations and in a laboratory compost model system augmented with selected bacteria. Overall, PCL showed better biodegradation properties in comparison to mcl-PHA. Both materials showed surface erosion after 4-weeks of exposure to total protein preparations of both strains, with a moderate weight loss of 1.3% when P. chlororaphis B-561 was utilized. In laboratory compost model system PCL and mcl-PHA showed significant weight loss ranging from 13 to 17% when Streptomyces sp. BV315 culture was used. Similar weight loss of PCL and mcl-PHA was achieved for 4 and 8 weeks, respectively indicating slower degradation of mcl-PHA. Growth on waste cooking oil as a sole carbon source increased the potential of both tested strains to degrade PCL and mcl-PHA, making them good candidates for augmentation of compost cultures in waste management of both waste cooking oils and biodegradable polymers.",
publisher = "Elsevier BV",
journal = "Polymer Degradation and Stability",
title = "Biodegradation of poly(ε-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil",
volume = "162",
pages = "160-168",
doi = "10.1016/j.polymdegradstab.2019.02.012"
}
Mandic M, Spasic J, Ponjavic M, Nikolic MS, Ćosović V, O'Connor KE, Nikodinović-Runić J, Đokić L, Jeremić S. Biodegradation of poly(ε-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil. Polymer Degradation and Stability. 2019;162:160-168
Mandic, M., Spasic, J., Ponjavic, M., Nikolic, M. S., Ćosović, V., O'Connor, K. E., Nikodinović-Runić, J., Đokić, L.,& Jeremić, S. (2019). Biodegradation of poly(ε-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil.
Polymer Degradation and StabilityElsevier BV., 162, 160-168.
https://doi.org/10.1016/j.polymdegradstab.2019.02.012
Mandic Mina, Spasic Jelena, Ponjavic Marijana, Nikolic Marija S., Ćosović Vladan, O'Connor Kevin E., Nikodinović-Runić Jasmina, Đokić Lidija, Jeremić Sanja, "Biodegradation of poly(ε-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil" 162 (2019):160-168,
https://doi.org/10.1016/j.polymdegradstab.2019.02.012 .

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutionsAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

OpenAIRERCUB