CER - Central Repository
Institute of Chemistry, Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Biodegradation of poly(ε-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil

Authorized Users Only
2019
Authors
Mandić, Mina
Spasić, Jelena
Ponjavić, Marijana
Nikolić, Marija S.
Ćosović, Vladan
O'Connor, Kevin E.
Nikodinović-Runić, Jasmina
Đokić, Lidija
Jeremić, Sanja
Article (Published version)
,
Elsevier BV
Metadata
Show full item record
Abstract
Petrochemical plastics are generally recalcitrant to microbial degradation and accumulate in the environment. Biodegradable polymers obtained synthetically like poly(ε-caprolactone) (PCL) or polyhydroxyalkanoates (PHA), obtained biotechnologically, have shown great potential as a replacement for petroleum-based plastics. Nevertheless, their biodegradation and environmental faith have been less examined. In this study, thin films of PCL (200 μm) and medium chain length PHA (mcl-PHA, 70 M fraction of 3-hydroxyoctanoate and 30 M fraction of 3-hydroxydecanoate, 600 μm) were exposed to total protein preparations (extracellular proteins combined with a crude cell extract) of soil isolates Pseudomonas chlororaphis B-561 and Streptomyces sp. BV315 that had been grown on waste cooking oil as a sole carbon source. Biodegradation potential of two polyesters was evaluated in buffer with total protein preparations and in a laboratory compost model system augmented with selected bacteria. Overall, P...CL showed better biodegradation properties in comparison to mcl-PHA. Both materials showed surface erosion after 4-weeks of exposure to total protein preparations of both strains, with a moderate weight loss of 1.3% when P. chlororaphis B-561 was utilized. In laboratory compost model system PCL and mcl-PHA showed significant weight loss ranging from 13 to 17% when Streptomyces sp. BV315 culture was used. Similar weight loss of PCL and mcl-PHA was achieved for 4 and 8 weeks, respectively indicating slower degradation of mcl-PHA. Growth on waste cooking oil as a sole carbon source increased the potential of both tested strains to degrade PCL and mcl-PHA, making them good candidates for augmentation of compost cultures in waste management of both waste cooking oils and biodegradable polymers.

Keywords:
Biopolymers / Enzymes / Pseudomonas / Streptomyces / Biodegradation / Compost
Source:
Polymer Degradation and Stability, 2019, 162, 160-168
Publisher:
  • Elsevier
Funding / projects:
  • Microbial diversity study and characterization of beneficial environmental microorganisms (RS-173048)
  • Synthesis and characterization of novel functional polymers and polymeric nanocomposites (RS-172062)
Note:
  • Peeer-reviewed version: http://cer.ihtm.bg.ac.rs/handle/123456789/2956

DOI: 10.1016/j.polymdegradstab.2019.02.012

ISSN: 0141-3910

WoS: 000465055500019

Scopus: 2-s2.0-85062047760
[ Google Scholar ]
12
6
URI
https://cer.ihtm.bg.ac.rs/handle/123456789/2955
Collections
  • Radovi istraživača / Researchers' publications
Institution/Community
IHTM
TY  - JOUR
AU  - Mandić, Mina
AU  - Spasić, Jelena
AU  - Ponjavić, Marijana
AU  - Nikolić, Marija S.
AU  - Ćosović, Vladan
AU  - O'Connor, Kevin E.
AU  - Nikodinović-Runić, Jasmina
AU  - Đokić, Lidija
AU  - Jeremić, Sanja
PY  - 2019
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2955
AB  - Petrochemical plastics are generally recalcitrant to microbial degradation and accumulate in the environment. Biodegradable polymers obtained synthetically like poly(ε-caprolactone) (PCL) or polyhydroxyalkanoates (PHA), obtained biotechnologically, have shown great potential as a replacement for petroleum-based plastics. Nevertheless, their biodegradation and environmental faith have been less examined. In this study, thin films of PCL (200 μm) and medium chain length PHA (mcl-PHA, 70 M fraction of 3-hydroxyoctanoate and 30 M fraction of 3-hydroxydecanoate, 600 μm) were exposed to total protein preparations (extracellular proteins combined with a crude cell extract) of soil isolates Pseudomonas chlororaphis B-561 and Streptomyces sp. BV315 that had been grown on waste cooking oil as a sole carbon source. Biodegradation potential of two polyesters was evaluated in buffer with total protein preparations and in a laboratory compost model system augmented with selected bacteria. Overall, PCL showed better biodegradation properties in comparison to mcl-PHA. Both materials showed surface erosion after 4-weeks of exposure to total protein preparations of both strains, with a moderate weight loss of 1.3% when P. chlororaphis B-561 was utilized. In laboratory compost model system PCL and mcl-PHA showed significant weight loss ranging from 13 to 17% when Streptomyces sp. BV315 culture was used. Similar weight loss of PCL and mcl-PHA was achieved for 4 and 8 weeks, respectively indicating slower degradation of mcl-PHA. Growth on waste cooking oil as a sole carbon source increased the potential of both tested strains to degrade PCL and mcl-PHA, making them good candidates for augmentation of compost cultures in waste management of both waste cooking oils and biodegradable polymers.
PB  - Elsevier
T2  - Polymer Degradation and Stability
T1  - Biodegradation of poly(ε-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil
VL  - 162
SP  - 160
EP  - 168
DO  - 10.1016/j.polymdegradstab.2019.02.012
ER  - 
@article{
author = "Mandić, Mina and Spasić, Jelena and Ponjavić, Marijana and Nikolić, Marija S. and Ćosović, Vladan and O'Connor, Kevin E. and Nikodinović-Runić, Jasmina and Đokić, Lidija and Jeremić, Sanja",
year = "2019",
abstract = "Petrochemical plastics are generally recalcitrant to microbial degradation and accumulate in the environment. Biodegradable polymers obtained synthetically like poly(ε-caprolactone) (PCL) or polyhydroxyalkanoates (PHA), obtained biotechnologically, have shown great potential as a replacement for petroleum-based plastics. Nevertheless, their biodegradation and environmental faith have been less examined. In this study, thin films of PCL (200 μm) and medium chain length PHA (mcl-PHA, 70 M fraction of 3-hydroxyoctanoate and 30 M fraction of 3-hydroxydecanoate, 600 μm) were exposed to total protein preparations (extracellular proteins combined with a crude cell extract) of soil isolates Pseudomonas chlororaphis B-561 and Streptomyces sp. BV315 that had been grown on waste cooking oil as a sole carbon source. Biodegradation potential of two polyesters was evaluated in buffer with total protein preparations and in a laboratory compost model system augmented with selected bacteria. Overall, PCL showed better biodegradation properties in comparison to mcl-PHA. Both materials showed surface erosion after 4-weeks of exposure to total protein preparations of both strains, with a moderate weight loss of 1.3% when P. chlororaphis B-561 was utilized. In laboratory compost model system PCL and mcl-PHA showed significant weight loss ranging from 13 to 17% when Streptomyces sp. BV315 culture was used. Similar weight loss of PCL and mcl-PHA was achieved for 4 and 8 weeks, respectively indicating slower degradation of mcl-PHA. Growth on waste cooking oil as a sole carbon source increased the potential of both tested strains to degrade PCL and mcl-PHA, making them good candidates for augmentation of compost cultures in waste management of both waste cooking oils and biodegradable polymers.",
publisher = "Elsevier",
journal = "Polymer Degradation and Stability",
title = "Biodegradation of poly(ε-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil",
volume = "162",
pages = "160-168",
doi = "10.1016/j.polymdegradstab.2019.02.012"
}
Mandić, M., Spasić, J., Ponjavić, M., Nikolić, M. S., Ćosović, V., O'Connor, K. E., Nikodinović-Runić, J., Đokić, L.,& Jeremić, S.. (2019). Biodegradation of poly(ε-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil. in Polymer Degradation and Stability
Elsevier., 162, 160-168.
https://doi.org/10.1016/j.polymdegradstab.2019.02.012
Mandić M, Spasić J, Ponjavić M, Nikolić MS, Ćosović V, O'Connor KE, Nikodinović-Runić J, Đokić L, Jeremić S. Biodegradation of poly(ε-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil. in Polymer Degradation and Stability. 2019;162:160-168.
doi:10.1016/j.polymdegradstab.2019.02.012 .
Mandić, Mina, Spasić, Jelena, Ponjavić, Marijana, Nikolić, Marija S., Ćosović, Vladan, O'Connor, Kevin E., Nikodinović-Runić, Jasmina, Đokić, Lidija, Jeremić, Sanja, "Biodegradation of poly(ε-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil" in Polymer Degradation and Stability, 162 (2019):160-168,
https://doi.org/10.1016/j.polymdegradstab.2019.02.012 . .

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB