CER - Centralni Repozitorijum IHTM-a
Institut za hemiju, tehnologiju i metalurgiju
    • English
    • Српски
    • Српски (Serbia)
  • Srpski (latinica) 
    • Engleski
    • Srpski (ćirilica)
    • Srpski (latinica)
  • Prijava
Pregled rada 
  •   CER - Repozitorijum Instituta za hemiju, tehnologiju i metalurgiju
  • IHTM
  • Radovi istraživača / Researchers' publications
  • Pregled rada
  •   CER - Repozitorijum Instituta za hemiju, tehnologiju i metalurgiju
  • IHTM
  • Radovi istraživača / Researchers' publications
  • Pregled rada
JavaScript is disabled for your browser. Some features of this site may not work without it.

Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen‐printed thick films for application in humidity sensing

Samo za registrovane korisnike
2019
Autori
Nikolić, Maria Vesna
Vasiljević, Zorka
Luković, Miloljub
Pavlović, Vera P.
Krstić, Jugoslav
Vujančević, Jelena
Tadić, Nenad
Vlahović, Branislav
Pavlović, Vladimir B.
Članak u časopisu (Objavljena verzija)
Metapodaci
Prikaz svih podataka o dokumentu
Apstrakt
Zinc ferrite nanocrystalline powder was obtained by solid state synthesis of starting zinc oxide and hematite nanopowders. Field emission scanning electron microscopy (FESEM and transmission electron microscopy (TEM), X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS) and Raman spectroscopy confirmed the formation of nanocrystalline zinc‐ferrite powder with a mixed spinel structure with small amounts of remaining zinc oxide and hematite as impurities. Thick film paste was formed and screen printed on test interdigitated PdAg electrodes on alumina substrate. Formation of a porous nanocrystalline structure was confirmed by scanning electron microscopy (SEM) and Hg porosimetry. Humidity sensing properties of zinc ferrite thick films were investigated by monitoring the change in impedance in the relative humidity interval 30‐90% in the frequency range 42 Hz – 1 MHz at room temperature (25 °C) and 50 °C. At 42 Hz at both analyzed temperatures the impedance reduced ~ 46 times in... the humidity range 30‐90%. The dominant influence of grain boundaries was confirmed by analysis of complex impedance with an equivalent circuit.

Ključne reči:
zinc ferrite / nanocrystalline powders / screen‐printed thick films / solid state synthesis / field emission scanning electron microscopy (FESEM) / transmission electron microscopy (TEM) / X‐ray diffraction (XRD) / X‐ray photoelectron spectroscopy (XPS) / Raman spectroscopy
Izvor:
International Journal of Applied Ceramic Technology, 2019, 16, 3, 981-993
Izdavač:
  • John Wiley & Sons, Inc.
Projekti:
  • 0-3D nanostrukture za primenu u elektronici i obnovljivim izvorima energije: sinteza, karakterizacija i procesiranje (RS-45007)
  • Litijum-jon baterije i gorivne ćelije-istraživanje i razvoj (RS-45014)
Napomena:
  • Peer-reviewed manuscript: http://dais.sanu.ac.rs/123456789/4848
  • Peer-reviewed version: http://cer.ihtm.bg.ac.rs/handle/123456789/2603

DOI: 10.1111/ijac.13190

ISSN: 1744-7402

WoS: 000463236200011

Scopus: 2-s2.0-85061495283
[ Google Scholar ]
10
9
URI
https://ceramics.onlinelibrary.wiley.com/doi/abs/10.1111/ijac.13190
http://cer.ihtm.bg.ac.rs/handle/123456789/2851
Kolekcije
  • Radovi istraživača / Researchers' publications
Institucija
IHTM
TY  - JOUR
AU  - Nikolić, Maria Vesna
AU  - Vasiljević, Zorka
AU  - Luković, Miloljub
AU  - Pavlović, Vera P.
AU  - Krstić, Jugoslav
AU  - Vujančević, Jelena
AU  - Tadić, Nenad
AU  - Vlahović, Branislav
AU  - Pavlović, Vladimir B.
PY  - 2019
UR  - https://ceramics.onlinelibrary.wiley.com/doi/abs/10.1111/ijac.13190
UR  - http://cer.ihtm.bg.ac.rs/handle/123456789/2851
AB  - Zinc ferrite nanocrystalline powder was obtained by solid state synthesis of starting zinc oxide and hematite nanopowders. Field emission scanning electron microscopy (FESEM and transmission electron microscopy (TEM), X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS) and Raman spectroscopy confirmed the formation of nanocrystalline zinc‐ferrite powder with a mixed spinel structure with small amounts of remaining zinc oxide and hematite as impurities. Thick film paste was formed and screen printed on test interdigitated PdAg electrodes on alumina substrate. Formation of a porous nanocrystalline structure was confirmed by scanning electron microscopy (SEM) and Hg porosimetry. Humidity sensing properties of zinc ferrite thick films were investigated by monitoring the change in impedance in the relative humidity interval 30‐90% in the frequency range 42 Hz – 1 MHz at room temperature (25 °C) and 50 °C. At 42 Hz at both analyzed temperatures the impedance reduced ~ 46 times in the humidity range 30‐90%. The dominant influence of grain boundaries was confirmed by analysis of complex impedance with an equivalent circuit.
PB  - John Wiley & Sons, Inc.
T2  - International Journal of Applied Ceramic Technology
T1  - Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen‐printed thick films for application in humidity sensing
VL  - 16
IS  - 3
SP  - 981
EP  - 993
DO  - 10.1111/ijac.13190
ER  - 
@article{
author = "Nikolić, Maria Vesna and Vasiljević, Zorka and Luković, Miloljub and Pavlović, Vera P. and Krstić, Jugoslav and Vujančević, Jelena and Tadić, Nenad and Vlahović, Branislav and Pavlović, Vladimir B.",
year = "2019",
url = "https://ceramics.onlinelibrary.wiley.com/doi/abs/10.1111/ijac.13190, http://cer.ihtm.bg.ac.rs/handle/123456789/2851",
abstract = "Zinc ferrite nanocrystalline powder was obtained by solid state synthesis of starting zinc oxide and hematite nanopowders. Field emission scanning electron microscopy (FESEM and transmission electron microscopy (TEM), X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS) and Raman spectroscopy confirmed the formation of nanocrystalline zinc‐ferrite powder with a mixed spinel structure with small amounts of remaining zinc oxide and hematite as impurities. Thick film paste was formed and screen printed on test interdigitated PdAg electrodes on alumina substrate. Formation of a porous nanocrystalline structure was confirmed by scanning electron microscopy (SEM) and Hg porosimetry. Humidity sensing properties of zinc ferrite thick films were investigated by monitoring the change in impedance in the relative humidity interval 30‐90% in the frequency range 42 Hz – 1 MHz at room temperature (25 °C) and 50 °C. At 42 Hz at both analyzed temperatures the impedance reduced ~ 46 times in the humidity range 30‐90%. The dominant influence of grain boundaries was confirmed by analysis of complex impedance with an equivalent circuit.",
publisher = "John Wiley & Sons, Inc.",
journal = "International Journal of Applied Ceramic Technology",
title = "Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen‐printed thick films for application in humidity sensing",
volume = "16",
number = "3",
pages = "981-993",
doi = "10.1111/ijac.13190"
}
Nikolić MV, Vasiljević Z, Luković M, Pavlović VP, Krstić J, Vujančević J, Tadić N, Vlahović B, Pavlović VB. Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen‐printed thick films for application in humidity sensing. International Journal of Applied Ceramic Technology. 2019;16(3):981-993
Nikolić, M. V., Vasiljević, Z., Luković, M., Pavlović, V. P., Krstić, J., Vujančević, J., Tadić, N., Vlahović, B.,& Pavlović, V. B. (2019). Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen‐printed thick films for application in humidity sensing.
International Journal of Applied Ceramic TechnologyJohn Wiley & Sons, Inc.., 16(3), 981-993.
https://doi.org/10.1111/ijac.13190
Nikolić Maria Vesna, Vasiljević Zorka, Luković Miloljub, Pavlović Vera P., Krstić Jugoslav, Vujančević Jelena, Tadić Nenad, Vlahović Branislav, Pavlović Vladimir B., "Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen‐printed thick films for application in humidity sensing" 16, no. 3 (2019):981-993,
https://doi.org/10.1111/ijac.13190 .

DSpace software copyright © 2002-2015  DuraSpace
O Centralnom repozitorijumu (CeR) | Pošaljite zapažanja

OpenAIRERCUB
 

 

Kompletan repozitorijumInstitucijeAutoriNasloviTemeOva institucijaAutoriNasloviTeme

Statistika

Pregled statistika

DSpace software copyright © 2002-2015  DuraSpace
O Centralnom repozitorijumu (CeR) | Pošaljite zapažanja

OpenAIRERCUB