CER - Central Repository
Institute of Chemistry, Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optical evidence of magnetic field-induced ferrofluid aggregation: Comparison of cobalt ferrite, magnetite, and magnesium ferrite

Authorized Users Only
2019
Authors
Lakić, Mladen
Anđelković, Ljubica
Šuljagić, Marija
Vulić, Predrag
Perić, Marko
Iskrenović, Predrag
Krstić, Ivan
Kuraica, Milorad M.
Nikolić, Aleksandar S.
Article (Accepted Version)
,
Elsevier
Metadata
Show full item record
Abstract
Light-transmitting measurements of white light and a consequentially chosen laser beam of 655 nm propagatingthrough citrate- and oleate-coated CoFe2O4, FeFe2O4, and MgFe2O4 nanoparticles under the influence of anexternal magnetic field were presented. New experimental settings were developed for the optical study offerrites’ behavior in ferrofluid with the applied magnetic field strength within the 30–400 mT range. A magneticfield-induced change of light transmittance occurred and a precipitation of all studied samples was obtained.Optical investigations of ferrofluid suspensions revealed that, contrary to the linear aggregates of colloidalCoFe2O4 and FeFe2O4, spheroidal aggregates were formed in the case of MgFe2O4. In all three cases, the surfacemodification resulted in decreased dipole–dipole interactions between ferrite cores, and thus, less precipitateswere noticed. All oleate-coated nanoparticles have demonstrated weaker magnetic responses compared to thecitrate-encapsulated samp...les. The aggregation of nanoparticles potentially increases cytotoxicity. Regardingnon-linear clustering of MgFe2O4 suspensions, it can be concluded that its excretion from the organism maylikely be easier and faster when used in diagnosis and/or therapy. Therefore, more attention should be paid tothe lowly toxic MgFe2O4 regarding its medical application.

Keywords:
Spectral analysis / Ferrofluid / Aggregation / Hard and soft ferrites / External magnetic field
Source:
Optical Materials, 2019, 91, 279-285
Publisher:
  • Elsevier
Funding / projects:
  • Rational design and synthesis of biologically active and coordination compounds and functional materials, relevant for (bio)nanotechnology (RS-172035)
  • Diagnostics and Optimization of Plasma Sources Important for Applications (RS-171034)
Note:
  • This is the peer-reviewed version of the article: https://doi.org/10.1016/j.optmat.2019.03.031
  • http://cer.ihtm.bg.ac.rs/handle/123456789/2638

DOI: 10.1016/j.optmat.2019.03.031

ISSN: 0925-3467

WoS: 000470938800040

Scopus: 2-s2.0-85063323726
[ Google Scholar ]
7
7
URI
https://cer.ihtm.bg.ac.rs/handle/123456789/2638
https://cer.ihtm.bg.ac.rs/handle/123456789/2657
Collections
  • Radovi istraživača / Researchers' publications
Institution/Community
IHTM
TY  - JOUR
AU  - Lakić, Mladen
AU  - Anđelković, Ljubica
AU  - Šuljagić, Marija
AU  - Vulić, Predrag
AU  - Perić, Marko
AU  - Iskrenović, Predrag
AU  - Krstić, Ivan
AU  - Kuraica, Milorad M.
AU  - Nikolić, Aleksandar S.
PY  - 2019
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2638
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2657
AB  - Light-transmitting measurements of white light and a consequentially chosen laser beam of 655 nm propagatingthrough citrate- and oleate-coated CoFe2O4, FeFe2O4, and MgFe2O4 nanoparticles under the influence of anexternal magnetic field were presented. New experimental settings were developed for the optical study offerrites’ behavior in ferrofluid with the applied magnetic field strength within the 30–400 mT range. A magneticfield-induced change of light transmittance occurred and a precipitation of all studied samples was obtained.Optical investigations of ferrofluid suspensions revealed that, contrary to the linear aggregates of colloidalCoFe2O4 and FeFe2O4, spheroidal aggregates were formed in the case of MgFe2O4. In all three cases, the surfacemodification resulted in decreased dipole–dipole interactions between ferrite cores, and thus, less precipitateswere noticed. All oleate-coated nanoparticles have demonstrated weaker magnetic responses compared to thecitrate-encapsulated samples. The aggregation of nanoparticles potentially increases cytotoxicity. Regardingnon-linear clustering of MgFe2O4 suspensions, it can be concluded that its excretion from the organism maylikely be easier and faster when used in diagnosis and/or therapy. Therefore, more attention should be paid tothe lowly toxic MgFe2O4 regarding its medical application.
PB  - Elsevier
T2  - Optical Materials
T1  - Optical evidence of magnetic field-induced ferrofluid aggregation: Comparison of cobalt ferrite, magnetite, and magnesium ferrite
VL  - 91
SP  - 279
EP  - 285
DO  - 10.1016/j.optmat.2019.03.031
ER  - 
@article{
author = "Lakić, Mladen and Anđelković, Ljubica and Šuljagić, Marija and Vulić, Predrag and Perić, Marko and Iskrenović, Predrag and Krstić, Ivan and Kuraica, Milorad M. and Nikolić, Aleksandar S.",
year = "2019",
abstract = "Light-transmitting measurements of white light and a consequentially chosen laser beam of 655 nm propagatingthrough citrate- and oleate-coated CoFe2O4, FeFe2O4, and MgFe2O4 nanoparticles under the influence of anexternal magnetic field were presented. New experimental settings were developed for the optical study offerrites’ behavior in ferrofluid with the applied magnetic field strength within the 30–400 mT range. A magneticfield-induced change of light transmittance occurred and a precipitation of all studied samples was obtained.Optical investigations of ferrofluid suspensions revealed that, contrary to the linear aggregates of colloidalCoFe2O4 and FeFe2O4, spheroidal aggregates were formed in the case of MgFe2O4. In all three cases, the surfacemodification resulted in decreased dipole–dipole interactions between ferrite cores, and thus, less precipitateswere noticed. All oleate-coated nanoparticles have demonstrated weaker magnetic responses compared to thecitrate-encapsulated samples. The aggregation of nanoparticles potentially increases cytotoxicity. Regardingnon-linear clustering of MgFe2O4 suspensions, it can be concluded that its excretion from the organism maylikely be easier and faster when used in diagnosis and/or therapy. Therefore, more attention should be paid tothe lowly toxic MgFe2O4 regarding its medical application.",
publisher = "Elsevier",
journal = "Optical Materials",
title = "Optical evidence of magnetic field-induced ferrofluid aggregation: Comparison of cobalt ferrite, magnetite, and magnesium ferrite",
volume = "91",
pages = "279-285",
doi = "10.1016/j.optmat.2019.03.031"
}
Lakić, M., Anđelković, L., Šuljagić, M., Vulić, P., Perić, M., Iskrenović, P., Krstić, I., Kuraica, M. M.,& Nikolić, A. S.. (2019). Optical evidence of magnetic field-induced ferrofluid aggregation: Comparison of cobalt ferrite, magnetite, and magnesium ferrite. in Optical Materials
Elsevier., 91, 279-285.
https://doi.org/10.1016/j.optmat.2019.03.031
Lakić M, Anđelković L, Šuljagić M, Vulić P, Perić M, Iskrenović P, Krstić I, Kuraica MM, Nikolić AS. Optical evidence of magnetic field-induced ferrofluid aggregation: Comparison of cobalt ferrite, magnetite, and magnesium ferrite. in Optical Materials. 2019;91:279-285.
doi:10.1016/j.optmat.2019.03.031 .
Lakić, Mladen, Anđelković, Ljubica, Šuljagić, Marija, Vulić, Predrag, Perić, Marko, Iskrenović, Predrag, Krstić, Ivan, Kuraica, Milorad M., Nikolić, Aleksandar S., "Optical evidence of magnetic field-induced ferrofluid aggregation: Comparison of cobalt ferrite, magnetite, and magnesium ferrite" in Optical Materials, 91 (2019):279-285,
https://doi.org/10.1016/j.optmat.2019.03.031 . .

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB