CER - Central Repository
Institute of Chemistry, Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen‐printed thick films for application in humidity sensing

Thumbnail
2019
10.1111@ijac.13190.pdf (2.567Mb)
Authors
Nikolić, Maria Vesna
Vasiljević, Zorka
Luković, Miloljub
Pavlović, Vera P.
Krstić, Jugoslav
Vujančević, Jelena
Tadić, Nenad
Vlahović, Branislav
Pavlović, Vladimir B.
Article (Accepted Version)
Metadata
Show full item record
Abstract
Zinc ferrite nanocrystalline powder was obtained by solid state synthesis of starting zinc oxide and hematite nanopowders. Field emission scanning electron microscopy (FESEM and transmission electron microscopy (TEM), X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS) and Raman spectroscopy confirmed the formation of nanocrystalline zinc‐ferrite powder with a mixed spinel structure with small amounts of remaining zinc oxide and hematite as impurities. Thick film paste was formed and screen printed on test interdigitated PdAg electrodes on alumina substrate. Formation of a porous nanocrystalline structure was confirmed by scanning electron microscopy (SEM) and Hg porosimetry. Humidity sensing properties of zinc ferrite thick films were investigated by monitoring the change in impedance in the relative humidity interval 30‐90% in the frequency range 42 Hz – 1 MHz at room temperature (25 °C) and 50 °C. At 42 Hz at both analyzed temperatures the impedance reduced ~ 46 times in... the humidity range 30‐90%. The dominant influence of grain boundaries was confirmed by analysis of complex impedance with an equivalent circuit.

Keywords:
zinc ferrite / nanocrystalline powders / screen‐printed thick films / solid state synthesis / field emission scanning electron microscopy (FESEM) / transmission electron microscopy (TEM) / X‐ray diffraction (XRD) / X‐ray photoelectron spectroscopy (XPS) / Raman spectroscopy
Source:
International Journal of Applied Ceramic Technology, 2019
Publisher:
  • John Wiley & Sons, Inc.
Funding / projects:
  • Zero- to Three-Dimensional Nanostructures for Application in Electronics and Renewable Energy Sources: Synthesis, Characterization and Processing (RS-45007)
  • Lithium-ion batteries and fuel cells - research and development (RS-45014)
Note:
  • This is the peer reviewed version of the following article: Nikolić, Maria Vesna, Zorka Ž. Vasiljević, Miloljub D. Luković, Vera P. Pavlović, Jugoslav B. Krstić, Jelena Vujančević, Nenad Tadić, Branislav Vlahović, and Vladimir B. Pavlović. 2019. “Investigation of ZnFe2O4 Spinel Ferrite Nanocrystalline Screen‐printed Thick Films for Application in Humidity Sensing.” International Journal of Applied Ceramic Technology. https://doi.org/10.1111/ijac.13190
  • http://cer.ihtm.bg.ac.rs/handle/123456789/2851

DOI: 10.1111/ijac.13190

ISSN: 1744-7402

WoS: 000463236200011

Scopus: 2-s2.0-85061495283
[ Google Scholar ]
24
15
URI
https://ceramics.onlinelibrary.wiley.com/doi/abs/10.1111/ijac.13190
http://dais.sanu.ac.rs/123456789/4848
https://cer.ihtm.bg.ac.rs/handle/123456789/2603
Collections
  • Radovi istraživača / Researchers' publications
Institution/Community
IHTM
TY  - JOUR
AU  - Nikolić, Maria Vesna
AU  - Vasiljević, Zorka
AU  - Luković, Miloljub
AU  - Pavlović, Vera P.
AU  - Krstić, Jugoslav
AU  - Vujančević, Jelena
AU  - Tadić, Nenad
AU  - Vlahović, Branislav
AU  - Pavlović, Vladimir B.
PY  - 2019
UR  - https://ceramics.onlinelibrary.wiley.com/doi/abs/10.1111/ijac.13190
UR  - http://dais.sanu.ac.rs/123456789/4848
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2603
AB  - Zinc ferrite nanocrystalline powder was obtained by solid state synthesis of starting zinc oxide and hematite nanopowders. Field emission scanning electron microscopy (FESEM and transmission electron microscopy (TEM), X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS) and Raman spectroscopy confirmed the formation of nanocrystalline zinc‐ferrite powder with a mixed spinel structure with small amounts of remaining zinc oxide and hematite as impurities. Thick film paste was formed and screen printed on test interdigitated PdAg electrodes on alumina substrate. Formation of a porous nanocrystalline structure was confirmed by scanning electron microscopy (SEM) and Hg porosimetry. Humidity sensing properties of zinc ferrite thick films were investigated by monitoring the change in impedance in the relative humidity interval 30‐90% in the frequency range 42 Hz – 1 MHz at room temperature (25 °C) and 50 °C. At 42 Hz at both analyzed temperatures the impedance reduced ~ 46 times in the humidity range 30‐90%. The dominant influence of grain boundaries was confirmed by analysis of complex impedance with an equivalent circuit.
PB  - John Wiley & Sons, Inc.
T2  - International Journal of Applied Ceramic Technology
T1  - Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen‐printed thick films for application in humidity sensing
DO  - 10.1111/ijac.13190
ER  - 
@article{
author = "Nikolić, Maria Vesna and Vasiljević, Zorka and Luković, Miloljub and Pavlović, Vera P. and Krstić, Jugoslav and Vujančević, Jelena and Tadić, Nenad and Vlahović, Branislav and Pavlović, Vladimir B.",
year = "2019",
abstract = "Zinc ferrite nanocrystalline powder was obtained by solid state synthesis of starting zinc oxide and hematite nanopowders. Field emission scanning electron microscopy (FESEM and transmission electron microscopy (TEM), X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS) and Raman spectroscopy confirmed the formation of nanocrystalline zinc‐ferrite powder with a mixed spinel structure with small amounts of remaining zinc oxide and hematite as impurities. Thick film paste was formed and screen printed on test interdigitated PdAg electrodes on alumina substrate. Formation of a porous nanocrystalline structure was confirmed by scanning electron microscopy (SEM) and Hg porosimetry. Humidity sensing properties of zinc ferrite thick films were investigated by monitoring the change in impedance in the relative humidity interval 30‐90% in the frequency range 42 Hz – 1 MHz at room temperature (25 °C) and 50 °C. At 42 Hz at both analyzed temperatures the impedance reduced ~ 46 times in the humidity range 30‐90%. The dominant influence of grain boundaries was confirmed by analysis of complex impedance with an equivalent circuit.",
publisher = "John Wiley & Sons, Inc.",
journal = "International Journal of Applied Ceramic Technology",
title = "Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen‐printed thick films for application in humidity sensing",
doi = "10.1111/ijac.13190"
}
Nikolić, M. V., Vasiljević, Z., Luković, M., Pavlović, V. P., Krstić, J., Vujančević, J., Tadić, N., Vlahović, B.,& Pavlović, V. B.. (2019). Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen‐printed thick films for application in humidity sensing. in International Journal of Applied Ceramic Technology
John Wiley & Sons, Inc...
https://doi.org/10.1111/ijac.13190
Nikolić MV, Vasiljević Z, Luković M, Pavlović VP, Krstić J, Vujančević J, Tadić N, Vlahović B, Pavlović VB. Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen‐printed thick films for application in humidity sensing. in International Journal of Applied Ceramic Technology. 2019;.
doi:10.1111/ijac.13190 .
Nikolić, Maria Vesna, Vasiljević, Zorka, Luković, Miloljub, Pavlović, Vera P., Krstić, Jugoslav, Vujančević, Jelena, Tadić, Nenad, Vlahović, Branislav, Pavlović, Vladimir B., "Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen‐printed thick films for application in humidity sensing" in International Journal of Applied Ceramic Technology (2019),
https://doi.org/10.1111/ijac.13190 . .

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB