CER - Central Repository
Institute of Chemistry, Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrilic)
    • Serbian (Latin)
  • Login
View Item 
  •   Central Repository
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
  •   Central Repository
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Edible blend films of pectin and poly(ethylene glycol): Preparation and physico-chemical evaluation

Authorized Users Only
2018
Authors
Šešlija, Sanja
Nešić, Aleksandra
Ružić, Jovana
Kalagasidis Krušić, Melina
Veličković, Sava J.
Avolio, Roberto
Santagata, Gabriella
Malinconico, Mario
Article (Published version)
Metadata
Show full item record
Abstract
The aim of this study was the development of novel polysaccharide based films intended to be used as edible food packaging material. The films were prepared by solution casting method using highly methoxylated pectin (PEC) and poly(ethylene glycol) (PEG) of various molecular weights (400, 600 and 1000 gmol(-1)) in different ratios (5:1, 3:1 and 1:1). The film formation was supported by hydrogen bonding between PEC and PEG, which was evidenced by means of ATR-FTIR and NMR analysis. TGA revealed that generally PEG behaves like a pro-degrading agent for pectin, except in the case of PEC/PEG film with a ratio of 1:1. Furthermore, DSC thermograms indicated that PEG1000 exists as a separate phase in the pectin matrix while the formulations with PEG400 and PEG600 showed mainly amorphous morphology. The addition of PEG enhanced the plasticization of PEC films, as evidenced by progressive decreasing of the glass transition temperature values (T-g). The tensile test measurements showed that incr...easing concentration of PEG produced weaker and more flexibile films. Due to the increased molecular mobility, the pectin phase became more permeable to water vapor as the PEG concentration increased. The obtained results showed that the combination of both polymers resulted in interesting bio -inspired edible films with the potential to compete with commercially used synthetic package materials.

Keywords:
Pectin / Poly(ethylene glycol) / Plasticization / Edible films / Hydrogen bonding
Source:
Food Hydrocolloids, 2018, 77, 494-501
Publisher:
  • Elsevier Sci Ltd, Oxford
Projects:
  • Ministry of Education, Science and Technological Development of the Republic of Serbia, Bilateral Project Serbia-Italy - 451-03-01231/2015-09/5
  • Synthesis and characterization of novel functional polymers and polymeric nanocomposites (RS-172062)
  • Advanced technologies for monitoring and environmental protection from chemical pollutants and radiation burden (RS-43009)

DOI: 10.1016/j.foodhyd.2017.10.027

ISSN: 0268-005X

WoS: 000424927700052

Scopus: 2-s2.0-85032344582
[ Google Scholar ]
22
16
URI
http://cer.ihtm.bg.ac.rs/handle/123456789/2473
Collections
  • Radovi istraživača / Researchers' publications
Institution
IHTM

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutionsAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

OpenAIRERCUB