CER - Central Repository
Institute of Chemistry, Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Theoretical study of azido gauche effect and its origin

Authorized Users Only
2017
Authors
Baranac-Stojanović, Marija
Stojanović, Milovan
Aleksić, Jovana
Article (Published version)
Metadata
Show full item record
Abstract
The strength of the azido gauche effect in 1,2-diazidoethane, N-(2-azidoethyl)ethanamide, (protonated) 2-azidoethanamine and (protonated) 2-azidoethanol and its origin were theoretically studied at the MP2/6-311++G(d,p) level of theory. The results show that the azido gauche effect in the amine and alcohol can exert a control over the molecular conformation to a similar extent as the fluorine gauche effect, but to a greater extent in the charged species, amide and vicinal diazido fragment. A quantitative partitioning of isomerization energy into contributions from electrostatic, orbital, dispersion and Pauli interactions and energy consumed in structural changes revealed that electrostatic forces play an important role in the stabilization of the gauche isomer in the two charged species and alcohol. Electrostatic and dispersion interactions are the main contributors to the gauche effect in the amide, whereas dispersion and orbital interactions can be considered to be the two most impor...tant stabilizing factors of the gauche form in the vicinal diazido fragment. The interplay of all three stabilizing interactions determines the gauche preference in the amine. Stereoelectronic effects, which are involved in orbital interactions, contribute to the gauche effect in all the molecules except the 2-azidoethylammonium ion and protonated 2-azidoethanol. Hydrogen-bonding interactions were found only in the protonated alcohol.

Source:
New Journal of Chemistry, 2017, 41, 11, 4644-4661
Publisher:
  • Royal Soc Chemistry, Cambridge
Funding / projects:
  • Experimental and theoretical study of reactivity and biological activity of stereodefined thiazolidines and their synthetic analogues (RS-172020)
Note:
  • Peer-reviewed verrsion: http://cer.ihtm.bg.ac.rs/handle/123456789/2969

DOI: 10.1039/c7nj00369b

ISSN: 1144-0546

WoS: 000402377400045

Scopus: 2-s2.0-85021676909
[ Google Scholar ]
2
2
URI
https://cer.ihtm.bg.ac.rs/handle/123456789/2264
Collections
  • Radovi istraživača / Researchers' publications
Institution/Community
IHTM
TY  - JOUR
AU  - Baranac-Stojanović, Marija
AU  - Stojanović, Milovan
AU  - Aleksić, Jovana
PY  - 2017
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2264
AB  - The strength of the azido gauche effect in 1,2-diazidoethane, N-(2-azidoethyl)ethanamide, (protonated) 2-azidoethanamine and (protonated) 2-azidoethanol and its origin were theoretically studied at the MP2/6-311++G(d,p) level of theory. The results show that the azido gauche effect in the amine and alcohol can exert a control over the molecular conformation to a similar extent as the fluorine gauche effect, but to a greater extent in the charged species, amide and vicinal diazido fragment. A quantitative partitioning of isomerization energy into contributions from electrostatic, orbital, dispersion and Pauli interactions and energy consumed in structural changes revealed that electrostatic forces play an important role in the stabilization of the gauche isomer in the two charged species and alcohol. Electrostatic and dispersion interactions are the main contributors to the gauche effect in the amide, whereas dispersion and orbital interactions can be considered to be the two most important stabilizing factors of the gauche form in the vicinal diazido fragment. The interplay of all three stabilizing interactions determines the gauche preference in the amine. Stereoelectronic effects, which are involved in orbital interactions, contribute to the gauche effect in all the molecules except the 2-azidoethylammonium ion and protonated 2-azidoethanol. Hydrogen-bonding interactions were found only in the protonated alcohol.
PB  - Royal Soc Chemistry, Cambridge
T2  - New Journal of Chemistry
T1  - Theoretical study of azido gauche effect and its origin
VL  - 41
IS  - 11
SP  - 4644
EP  - 4661
DO  - 10.1039/c7nj00369b
ER  - 
@article{
author = "Baranac-Stojanović, Marija and Stojanović, Milovan and Aleksić, Jovana",
year = "2017",
abstract = "The strength of the azido gauche effect in 1,2-diazidoethane, N-(2-azidoethyl)ethanamide, (protonated) 2-azidoethanamine and (protonated) 2-azidoethanol and its origin were theoretically studied at the MP2/6-311++G(d,p) level of theory. The results show that the azido gauche effect in the amine and alcohol can exert a control over the molecular conformation to a similar extent as the fluorine gauche effect, but to a greater extent in the charged species, amide and vicinal diazido fragment. A quantitative partitioning of isomerization energy into contributions from electrostatic, orbital, dispersion and Pauli interactions and energy consumed in structural changes revealed that electrostatic forces play an important role in the stabilization of the gauche isomer in the two charged species and alcohol. Electrostatic and dispersion interactions are the main contributors to the gauche effect in the amide, whereas dispersion and orbital interactions can be considered to be the two most important stabilizing factors of the gauche form in the vicinal diazido fragment. The interplay of all three stabilizing interactions determines the gauche preference in the amine. Stereoelectronic effects, which are involved in orbital interactions, contribute to the gauche effect in all the molecules except the 2-azidoethylammonium ion and protonated 2-azidoethanol. Hydrogen-bonding interactions were found only in the protonated alcohol.",
publisher = "Royal Soc Chemistry, Cambridge",
journal = "New Journal of Chemistry",
title = "Theoretical study of azido gauche effect and its origin",
volume = "41",
number = "11",
pages = "4644-4661",
doi = "10.1039/c7nj00369b"
}
Baranac-Stojanović, M., Stojanović, M.,& Aleksić, J.. (2017). Theoretical study of azido gauche effect and its origin. in New Journal of Chemistry
Royal Soc Chemistry, Cambridge., 41(11), 4644-4661.
https://doi.org/10.1039/c7nj00369b
Baranac-Stojanović M, Stojanović M, Aleksić J. Theoretical study of azido gauche effect and its origin. in New Journal of Chemistry. 2017;41(11):4644-4661.
doi:10.1039/c7nj00369b .
Baranac-Stojanović, Marija, Stojanović, Milovan, Aleksić, Jovana, "Theoretical study of azido gauche effect and its origin" in New Journal of Chemistry, 41, no. 11 (2017):4644-4661,
https://doi.org/10.1039/c7nj00369b . .

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB