CER - Central Repository
Institute of Chemistry, Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Degradation of Triton X-100 in Water Falling Film Dielectric Barrier Discharge Reactor

Authorized Users Only
2016
Authors
Aonyas, Munera M
Nesic, Jelena
Jović, Milica
Marković, Marijana
Dojčinović, Biljana
Obradović, Bratislav M.
Roglić, Goran
Article (Published version)
Metadata
Show full item record
Abstract
The aim of this study was to investigate the degradation of the non-ionic surfactant Triton X-100 (TX-100) by using an advanced oxidation process in a non-thermal plasma reactor based on water falling film dielectric barrier discharge (DBD). The effects of two catalytic plasma systems, Fe2+/DBD and H2O2/DBD, were tested to improve the degradation of TX-100 and the mineralization efficiency in the DBD reactor. Both catalytic systems exhibited significant improvements in degradation efficiency, especially in the beginning of the treatment: the efficiency increased from 23 to 88 and 50%, for 5 mgL(-1) Fe2+/DBD and 10 mmol L-1 H2O2/DBD, respectively. The mineralization efficiency of TX-100 in the non-catalytic DBD treatment was very low (1%), but with addition of catalysts, the mineralization efficiency was drastically improved, with H2O2/DBD at 4-34% (depending on the H2O2 concentration) and Fe2+/DBD at 2-21% (depending on the Fe2+ concentration). Degradation products of TX-100 in non-cat...alytic and two catalytic systems were identified using UHPLC-Orbitrap-MS. Based on the degradation products that were identified, a simple mechanistic scheme was proposed. MS analysis revealed that degradation of TX-100 in the DBD reactor occurred by shortening the ethoxy chain. In the presence of catalysts, there are additional reactions of cleavage of the alkyl chain followed by formation of polyethoxylated phenol (H2O2/DBD) and addition of OH center dot radicals onto the aromatic ring (Fe2+/DBD). The final degradation products did not cause any significant toxic effects to Vibrio fischeri or Artemia salina.

Keywords:
Advanced oxidation processes / Biodegradation / Non-ionic surfactants / Plasma reactor / Toxicity
Source:
Clean-Soil Air Water, 2016, 44, 4, 422-429
Publisher:
  • Wiley-Blackwell, Hoboken
Funding / projects:
  • Application of advanced oxidation processes and nanostructured oxide materials for the removal of pollutants from the environment, development and optimisation of instrumental techniques for efficiency monitoring (RS-172030)
  • Reinforcement of the Faculty of Chemistry, University of Belgrade, towards becoming a Center of Excellence in the region of WB for Molecular Biotechnology and Food research (EU-256716)

DOI: 10.1002/clen.201500501

ISSN: 1863-0650

WoS: 000374541500012

Scopus: 2-s2.0-84958025907
[ Google Scholar ]
5
4
URI
https://cer.ihtm.bg.ac.rs/handle/123456789/1952
Collections
  • Radovi istraživača / Researchers' publications
Institution/Community
IHTM
TY  - JOUR
AU  - Aonyas, Munera M
AU  - Nesic, Jelena
AU  - Jović, Milica
AU  - Marković, Marijana
AU  - Dojčinović, Biljana
AU  - Obradović, Bratislav M.
AU  - Roglić, Goran
PY  - 2016
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1952
AB  - The aim of this study was to investigate the degradation of the non-ionic surfactant Triton X-100 (TX-100) by using an advanced oxidation process in a non-thermal plasma reactor based on water falling film dielectric barrier discharge (DBD). The effects of two catalytic plasma systems, Fe2+/DBD and H2O2/DBD, were tested to improve the degradation of TX-100 and the mineralization efficiency in the DBD reactor. Both catalytic systems exhibited significant improvements in degradation efficiency, especially in the beginning of the treatment: the efficiency increased from 23 to 88 and 50%, for 5 mgL(-1) Fe2+/DBD and 10 mmol L-1 H2O2/DBD, respectively. The mineralization efficiency of TX-100 in the non-catalytic DBD treatment was very low (1%), but with addition of catalysts, the mineralization efficiency was drastically improved, with H2O2/DBD at 4-34% (depending on the H2O2 concentration) and Fe2+/DBD at 2-21% (depending on the Fe2+ concentration). Degradation products of TX-100 in non-catalytic and two catalytic systems were identified using UHPLC-Orbitrap-MS. Based on the degradation products that were identified, a simple mechanistic scheme was proposed. MS analysis revealed that degradation of TX-100 in the DBD reactor occurred by shortening the ethoxy chain. In the presence of catalysts, there are additional reactions of cleavage of the alkyl chain followed by formation of polyethoxylated phenol (H2O2/DBD) and addition of OH center dot radicals onto the aromatic ring (Fe2+/DBD). The final degradation products did not cause any significant toxic effects to Vibrio fischeri or Artemia salina.
PB  - Wiley-Blackwell, Hoboken
T2  - Clean-Soil Air Water
T1  - Degradation of Triton X-100 in Water Falling Film Dielectric Barrier Discharge Reactor
VL  - 44
IS  - 4
SP  - 422
EP  - 429
DO  - 10.1002/clen.201500501
UR  - Conv_3520
ER  - 
@article{
author = "Aonyas, Munera M and Nesic, Jelena and Jović, Milica and Marković, Marijana and Dojčinović, Biljana and Obradović, Bratislav M. and Roglić, Goran",
year = "2016",
abstract = "The aim of this study was to investigate the degradation of the non-ionic surfactant Triton X-100 (TX-100) by using an advanced oxidation process in a non-thermal plasma reactor based on water falling film dielectric barrier discharge (DBD). The effects of two catalytic plasma systems, Fe2+/DBD and H2O2/DBD, were tested to improve the degradation of TX-100 and the mineralization efficiency in the DBD reactor. Both catalytic systems exhibited significant improvements in degradation efficiency, especially in the beginning of the treatment: the efficiency increased from 23 to 88 and 50%, for 5 mgL(-1) Fe2+/DBD and 10 mmol L-1 H2O2/DBD, respectively. The mineralization efficiency of TX-100 in the non-catalytic DBD treatment was very low (1%), but with addition of catalysts, the mineralization efficiency was drastically improved, with H2O2/DBD at 4-34% (depending on the H2O2 concentration) and Fe2+/DBD at 2-21% (depending on the Fe2+ concentration). Degradation products of TX-100 in non-catalytic and two catalytic systems were identified using UHPLC-Orbitrap-MS. Based on the degradation products that were identified, a simple mechanistic scheme was proposed. MS analysis revealed that degradation of TX-100 in the DBD reactor occurred by shortening the ethoxy chain. In the presence of catalysts, there are additional reactions of cleavage of the alkyl chain followed by formation of polyethoxylated phenol (H2O2/DBD) and addition of OH center dot radicals onto the aromatic ring (Fe2+/DBD). The final degradation products did not cause any significant toxic effects to Vibrio fischeri or Artemia salina.",
publisher = "Wiley-Blackwell, Hoboken",
journal = "Clean-Soil Air Water",
title = "Degradation of Triton X-100 in Water Falling Film Dielectric Barrier Discharge Reactor",
volume = "44",
number = "4",
pages = "422-429",
doi = "10.1002/clen.201500501",
url = "Conv_3520"
}
Aonyas, M. M., Nesic, J., Jović, M., Marković, M., Dojčinović, B., Obradović, B. M.,& Roglić, G.. (2016). Degradation of Triton X-100 in Water Falling Film Dielectric Barrier Discharge Reactor. in Clean-Soil Air Water
Wiley-Blackwell, Hoboken., 44(4), 422-429.
https://doi.org/10.1002/clen.201500501
Conv_3520
Aonyas MM, Nesic J, Jović M, Marković M, Dojčinović B, Obradović BM, Roglić G. Degradation of Triton X-100 in Water Falling Film Dielectric Barrier Discharge Reactor. in Clean-Soil Air Water. 2016;44(4):422-429.
doi:10.1002/clen.201500501
Conv_3520 .
Aonyas, Munera M, Nesic, Jelena, Jović, Milica, Marković, Marijana, Dojčinović, Biljana, Obradović, Bratislav M., Roglić, Goran, "Degradation of Triton X-100 in Water Falling Film Dielectric Barrier Discharge Reactor" in Clean-Soil Air Water, 44, no. 4 (2016):422-429,
https://doi.org/10.1002/clen.201500501 .,
Conv_3520 .

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB