CER - Central Repository
Institute of Chemistry, Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

RuxTi1-xO2 as the support for Pt nanoparticles: Electrocatalysis of methanol oxidation

Thumbnail
2015
1761.pdf (120.7Kb)
Authors
Obradović, Maja
Lačnjevac, Uroš
Babic, B M
Ercius, P
Radmilović, Velimir R.
Krstajić, Nedeljko V.
Gojković, Snežana Lj.
Article (Published version)
Metadata
Show full item record
Abstract
Two binary Ru-Ti oxides, Rum Ti0.9O2 and Ru0.7Ti0.3O2, were synthesized by the sol-gel method and used as an electrocatalyst support. The system was characterized by XRD, EDS, TEM and cyclic voltammetry. The Rum Ti0.9O2 and Ru0.7Ti0.3O2 consist of two phases of anatase and rutile structure. An average size of the Pt nanoparticles supported on them is similar to 3.5 nm and they are deposited on both Ru and Ti-rich domains. The supports exhibited good conductivity and electrochemical stability. The onset potentials of COads oxidation on the synthesized catalysts and on commercial PtRu/C are similar to each other and lower than that on Pt/C. This suggests that in Pt/Rum Ti0.9O2 and Pt/Ru0(.7)Ti(0.3)O(2) the Pt nanoparticles are in close contact with Ru atoms from the support, which enables the bifunctional mechanism. The activity and stability of the catalysts for methanol oxidation were examined under potentiodynamic and potentiostatic conditions. While the activity of Pt/Rum Ti0.9O2 is ...unsatisfactory, the performance of Pt/Ru0.7Ti0.3O2 is comparable to PtRu/C. For example, in the potentiostatic test at 0.5 V the activities after 25 min are 0.035 mA cm(-2) and 0.022 mA cm(-2) for Pt/Ru0.7Ti0.3O2 and PtRu/C, respectively. In potentiodynamic test the activities at 0.5V after 250 cycles are around 0.02 mA cm(-2) for both catalysts.

Keywords:
Methanol oxidation / Platinum / TiO2 / RuO2 / Fuel cell
Source:
Applied Catalysis B-Environmental, 2015, 170, 144-152
Publisher:
  • Elsevier
Funding / projects:
  • Development, characterization and application nanostructured and composite electrocatalysts and interactive supports for fuel cells and water electrolysis (RS-172054)
  • Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy - DE-AC02-05CH11231

DOI: 10.1016/j.apcatb.2015.01.038

ISSN: 0926-3373

WoS: 000351646200014

Scopus: 2-s2.0-84922390964
[ Google Scholar ]
23
20
URI
https://cer.ihtm.bg.ac.rs/handle/123456789/1763
Collections
  • Radovi istraživača / Researchers' publications
Institution/Community
IHTM
TY  - JOUR
AU  - Obradović, Maja
AU  - Lačnjevac, Uroš
AU  - Babic, B M
AU  - Ercius, P
AU  - Radmilović, Velimir R.
AU  - Krstajić, Nedeljko V.
AU  - Gojković, Snežana Lj.
PY  - 2015
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1763
AB  - Two binary Ru-Ti oxides, Rum Ti0.9O2 and Ru0.7Ti0.3O2, were synthesized by the sol-gel method and used as an electrocatalyst support. The system was characterized by XRD, EDS, TEM and cyclic voltammetry. The Rum Ti0.9O2 and Ru0.7Ti0.3O2 consist of two phases of anatase and rutile structure. An average size of the Pt nanoparticles supported on them is similar to 3.5 nm and they are deposited on both Ru and Ti-rich domains. The supports exhibited good conductivity and electrochemical stability. The onset potentials of COads oxidation on the synthesized catalysts and on commercial PtRu/C are similar to each other and lower than that on Pt/C. This suggests that in Pt/Rum Ti0.9O2 and Pt/Ru0(.7)Ti(0.3)O(2) the Pt nanoparticles are in close contact with Ru atoms from the support, which enables the bifunctional mechanism. The activity and stability of the catalysts for methanol oxidation were examined under potentiodynamic and potentiostatic conditions. While the activity of Pt/Rum Ti0.9O2 is unsatisfactory, the performance of Pt/Ru0.7Ti0.3O2 is comparable to PtRu/C. For example, in the potentiostatic test at 0.5 V the activities after 25 min are 0.035 mA cm(-2) and 0.022 mA cm(-2) for Pt/Ru0.7Ti0.3O2 and PtRu/C, respectively. In potentiodynamic test the activities at 0.5V after 250 cycles are around 0.02 mA cm(-2) for both catalysts.
PB  - Elsevier
T2  - Applied Catalysis B-Environmental
T1  - RuxTi1-xO2 as the support for Pt nanoparticles: Electrocatalysis of methanol oxidation
VL  - 170
SP  - 144
EP  - 152
DO  - 10.1016/j.apcatb.2015.01.038
ER  - 
@article{
author = "Obradović, Maja and Lačnjevac, Uroš and Babic, B M and Ercius, P and Radmilović, Velimir R. and Krstajić, Nedeljko V. and Gojković, Snežana Lj.",
year = "2015",
abstract = "Two binary Ru-Ti oxides, Rum Ti0.9O2 and Ru0.7Ti0.3O2, were synthesized by the sol-gel method and used as an electrocatalyst support. The system was characterized by XRD, EDS, TEM and cyclic voltammetry. The Rum Ti0.9O2 and Ru0.7Ti0.3O2 consist of two phases of anatase and rutile structure. An average size of the Pt nanoparticles supported on them is similar to 3.5 nm and they are deposited on both Ru and Ti-rich domains. The supports exhibited good conductivity and electrochemical stability. The onset potentials of COads oxidation on the synthesized catalysts and on commercial PtRu/C are similar to each other and lower than that on Pt/C. This suggests that in Pt/Rum Ti0.9O2 and Pt/Ru0(.7)Ti(0.3)O(2) the Pt nanoparticles are in close contact with Ru atoms from the support, which enables the bifunctional mechanism. The activity and stability of the catalysts for methanol oxidation were examined under potentiodynamic and potentiostatic conditions. While the activity of Pt/Rum Ti0.9O2 is unsatisfactory, the performance of Pt/Ru0.7Ti0.3O2 is comparable to PtRu/C. For example, in the potentiostatic test at 0.5 V the activities after 25 min are 0.035 mA cm(-2) and 0.022 mA cm(-2) for Pt/Ru0.7Ti0.3O2 and PtRu/C, respectively. In potentiodynamic test the activities at 0.5V after 250 cycles are around 0.02 mA cm(-2) for both catalysts.",
publisher = "Elsevier",
journal = "Applied Catalysis B-Environmental",
title = "RuxTi1-xO2 as the support for Pt nanoparticles: Electrocatalysis of methanol oxidation",
volume = "170",
pages = "144-152",
doi = "10.1016/j.apcatb.2015.01.038"
}
Obradović, M., Lačnjevac, U., Babic, B. M., Ercius, P., Radmilović, V. R., Krstajić, N. V.,& Gojković, S. Lj.. (2015). RuxTi1-xO2 as the support for Pt nanoparticles: Electrocatalysis of methanol oxidation. in Applied Catalysis B-Environmental
Elsevier., 170, 144-152.
https://doi.org/10.1016/j.apcatb.2015.01.038
Obradović M, Lačnjevac U, Babic BM, Ercius P, Radmilović VR, Krstajić NV, Gojković SL. RuxTi1-xO2 as the support for Pt nanoparticles: Electrocatalysis of methanol oxidation. in Applied Catalysis B-Environmental. 2015;170:144-152.
doi:10.1016/j.apcatb.2015.01.038 .
Obradović, Maja, Lačnjevac, Uroš, Babic, B M, Ercius, P, Radmilović, Velimir R., Krstajić, Nedeljko V., Gojković, Snežana Lj., "RuxTi1-xO2 as the support for Pt nanoparticles: Electrocatalysis of methanol oxidation" in Applied Catalysis B-Environmental, 170 (2015):144-152,
https://doi.org/10.1016/j.apcatb.2015.01.038 . .

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB