Design of multi-pressure organic rankine cycles for waste heat recovery in site utility systems
Samo za registrovane korisnike
2014
Poglavlje u monografiji (Objavljena verzija)

Metapodaci
Prikaz svih podataka o dokumentuApstrakt
This work addresses the design of Organic Rankine Cycle (ORC) processes used for power generation from low-grade heat available in site utility systems. The Exergy Composite Curves approach is used within a systemic optimization framework to explore various complex ORC configurations. The method facilitates interconnectivity at several temperature and pressure levels, considering different types and numbers of turbines as design decision parameters simultaneously with other operating ORC features. It is employed to investigate the performance of two generic ORC configurations, namely one considering independent pressure loops with expansion turbines and the other considering pressure loops contacted through induction turbines. To optimize the number of pressure levels, ORC structural configuration, and operating parameters an inclusive objective function is used considering thermodynamic criteria. The application of the method is demonstrated by a case study on waste heat recovery and ...reuse in a utility plant.
Ključne reči:
Exergy analysis / Organic Rankine cycle / Process design / Utility systemsIzvor:
Computer Aided Chemical Engineering, 2014, 33, 109-114Izdavač:
- Elsevier
DOI: 10.1016/B978-0-444-63456-6.50019-3
ISSN: 1570-7946
Scopus: 2-s2.0-84902955629
Institucija/grupa
IHTMTY - CHAP AU - Stijepović, Mirko Z. AU - Papadopoulos, A.I. AU - Linke, P. AU - Grujić, Aleksandar AU - Seferlis, P. PY - 2014 UR - https://cer.ihtm.bg.ac.rs/handle/123456789/1604 AB - This work addresses the design of Organic Rankine Cycle (ORC) processes used for power generation from low-grade heat available in site utility systems. The Exergy Composite Curves approach is used within a systemic optimization framework to explore various complex ORC configurations. The method facilitates interconnectivity at several temperature and pressure levels, considering different types and numbers of turbines as design decision parameters simultaneously with other operating ORC features. It is employed to investigate the performance of two generic ORC configurations, namely one considering independent pressure loops with expansion turbines and the other considering pressure loops contacted through induction turbines. To optimize the number of pressure levels, ORC structural configuration, and operating parameters an inclusive objective function is used considering thermodynamic criteria. The application of the method is demonstrated by a case study on waste heat recovery and reuse in a utility plant. PB - Elsevier T2 - Computer Aided Chemical Engineering T1 - Design of multi-pressure organic rankine cycles for waste heat recovery in site utility systems VL - 33 SP - 109 EP - 114 DO - 10.1016/B978-0-444-63456-6.50019-3 ER -
@inbook{ author = "Stijepović, Mirko Z. and Papadopoulos, A.I. and Linke, P. and Grujić, Aleksandar and Seferlis, P.", year = "2014", abstract = "This work addresses the design of Organic Rankine Cycle (ORC) processes used for power generation from low-grade heat available in site utility systems. The Exergy Composite Curves approach is used within a systemic optimization framework to explore various complex ORC configurations. The method facilitates interconnectivity at several temperature and pressure levels, considering different types and numbers of turbines as design decision parameters simultaneously with other operating ORC features. It is employed to investigate the performance of two generic ORC configurations, namely one considering independent pressure loops with expansion turbines and the other considering pressure loops contacted through induction turbines. To optimize the number of pressure levels, ORC structural configuration, and operating parameters an inclusive objective function is used considering thermodynamic criteria. The application of the method is demonstrated by a case study on waste heat recovery and reuse in a utility plant.", publisher = "Elsevier", journal = "Computer Aided Chemical Engineering", booktitle = "Design of multi-pressure organic rankine cycles for waste heat recovery in site utility systems", volume = "33", pages = "109-114", doi = "10.1016/B978-0-444-63456-6.50019-3" }
Stijepović, M. Z., Papadopoulos, A.I., Linke, P., Grujić, A.,& Seferlis, P.. (2014). Design of multi-pressure organic rankine cycles for waste heat recovery in site utility systems. in Computer Aided Chemical Engineering Elsevier., 33, 109-114. https://doi.org/10.1016/B978-0-444-63456-6.50019-3
Stijepović MZ, Papadopoulos A, Linke P, Grujić A, Seferlis P. Design of multi-pressure organic rankine cycles for waste heat recovery in site utility systems. in Computer Aided Chemical Engineering. 2014;33:109-114. doi:10.1016/B978-0-444-63456-6.50019-3 .
Stijepović, Mirko Z., Papadopoulos, A.I., Linke, P., Grujić, Aleksandar, Seferlis, P., "Design of multi-pressure organic rankine cycles for waste heat recovery in site utility systems" in Computer Aided Chemical Engineering, 33 (2014):109-114, https://doi.org/10.1016/B978-0-444-63456-6.50019-3 . .