CER - Central Repository
Institute of Chemistry, Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effect of different catalysts on mesotrione degradation in water falling film DBD reactor

Authorized Users Only
2014
Authors
Jović, Milica
Dojčinović, Biljana
Kovačević, Vesna V.
Obradović, Bratislav M.
Kuraica, Milorad M.
Gašić, Uroš
Roglić, Goran
Article (Published version)
Metadata
Show full item record
Abstract
In this study the effect of different homogenous catalysts and their dosage on mesotrione degradation in water falling film dielectric barrier discharge (DBD) reactor was investigated. Four catalytic systems Mn2+ /DBD, Co2+/DBD, Fe2+/DBD and H2O2/DBD were examined. In order to find optimal conditions various concentrations of catalysts and specific energy density (SED) values were tested in each system. Mesotrione degradation efficiency was determined by HPLC-DAD and mineralization efficiency by TOC value. Degradation products were identified by UHPLC-Orbitrap-MS and compared after finding out the optimal concentration for each catalytic system. All studied catalytic systems have proved to be successful in improving mesotrione removal, but the highest improvement in degradation efficiency was obtained with catalytic system 5 ppm Fe2+/DBD (by 50% for SED 124 kJ/L) and 10 mM H2O2/DBD for improving mineralization efficiency (by 45% for SED 310 kJ/L). Nine degradation products were identif...ied in catalytic DBD treatments. Main degradation products were: glutaric acid, 2-nitro-4-methylsulfonylbenzaldehyde and 2-nitro-4-methylsulfonylbenzoic acid. H2O2/DBD gave significantly different degradation products than other catalytic systems. Dominant degradation products in other systems were not identified in system with hydrogen peroxide, which supported the fact that the highest mineralization efficiency was achieved with peroxide catalytic system. Global toxicity of samples after degradation in each system was determined using Artemia sauna and they could be considered as "non toxic".

Keywords:
Mesotrione / Triketone / AOP / DBD / Orbitrap MS
Source:
Chemical Engineering Journal, 2014, 248, 63-70
Publisher:
  • Elsevier Science Sa, Lausanne
Funding / projects:
  • Application of advanced oxidation processes and nanostructured oxide materials for the removal of pollutants from the environment, development and optimisation of instrumental techniques for efficiency monitoring (RS-172030)
  • Diagnostics and Optimization of Plasma Sources Important for Applications (RS-171034)
  • Integrated systems for flue gas cleansing and development of technologies for zero pollution power plants (RS-33022)
  • Reinforcement of the Faculty of Chemistry, University of Belgrade, towards becoming a Center of Excellence in the region of WB for Molecular Biotechnology and Food research (EU-256716)

DOI: 10.1016/j.cej.2014.03.031

ISSN: 1385-8947

WoS: 000337649000007

Scopus: 2-s2.0-84897547588
[ Google Scholar ]
35
30
URI
https://cer.ihtm.bg.ac.rs/handle/123456789/1590
Collections
  • Radovi istraživača / Researchers' publications
Institution/Community
IHTM
TY  - JOUR
AU  - Jović, Milica
AU  - Dojčinović, Biljana
AU  - Kovačević, Vesna V.
AU  - Obradović, Bratislav M.
AU  - Kuraica, Milorad M.
AU  - Gašić, Uroš
AU  - Roglić, Goran
PY  - 2014
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1590
AB  - In this study the effect of different homogenous catalysts and their dosage on mesotrione degradation in water falling film dielectric barrier discharge (DBD) reactor was investigated. Four catalytic systems Mn2+ /DBD, Co2+/DBD, Fe2+/DBD and H2O2/DBD were examined. In order to find optimal conditions various concentrations of catalysts and specific energy density (SED) values were tested in each system. Mesotrione degradation efficiency was determined by HPLC-DAD and mineralization efficiency by TOC value. Degradation products were identified by UHPLC-Orbitrap-MS and compared after finding out the optimal concentration for each catalytic system. All studied catalytic systems have proved to be successful in improving mesotrione removal, but the highest improvement in degradation efficiency was obtained with catalytic system 5 ppm Fe2+/DBD (by 50% for SED 124 kJ/L) and 10 mM H2O2/DBD for improving mineralization efficiency (by 45% for SED 310 kJ/L). Nine degradation products were identified in catalytic DBD treatments. Main degradation products were: glutaric acid, 2-nitro-4-methylsulfonylbenzaldehyde and 2-nitro-4-methylsulfonylbenzoic acid. H2O2/DBD gave significantly different degradation products than other catalytic systems. Dominant degradation products in other systems were not identified in system with hydrogen peroxide, which supported the fact that the highest mineralization efficiency was achieved with peroxide catalytic system. Global toxicity of samples after degradation in each system was determined using Artemia sauna and they could be considered as "non toxic".
PB  - Elsevier Science Sa, Lausanne
T2  - Chemical Engineering Journal
T1  - Effect of different catalysts on mesotrione degradation in water falling film DBD reactor
VL  - 248
SP  - 63
EP  - 70
DO  - 10.1016/j.cej.2014.03.031
ER  - 
@article{
author = "Jović, Milica and Dojčinović, Biljana and Kovačević, Vesna V. and Obradović, Bratislav M. and Kuraica, Milorad M. and Gašić, Uroš and Roglić, Goran",
year = "2014",
abstract = "In this study the effect of different homogenous catalysts and their dosage on mesotrione degradation in water falling film dielectric barrier discharge (DBD) reactor was investigated. Four catalytic systems Mn2+ /DBD, Co2+/DBD, Fe2+/DBD and H2O2/DBD were examined. In order to find optimal conditions various concentrations of catalysts and specific energy density (SED) values were tested in each system. Mesotrione degradation efficiency was determined by HPLC-DAD and mineralization efficiency by TOC value. Degradation products were identified by UHPLC-Orbitrap-MS and compared after finding out the optimal concentration for each catalytic system. All studied catalytic systems have proved to be successful in improving mesotrione removal, but the highest improvement in degradation efficiency was obtained with catalytic system 5 ppm Fe2+/DBD (by 50% for SED 124 kJ/L) and 10 mM H2O2/DBD for improving mineralization efficiency (by 45% for SED 310 kJ/L). Nine degradation products were identified in catalytic DBD treatments. Main degradation products were: glutaric acid, 2-nitro-4-methylsulfonylbenzaldehyde and 2-nitro-4-methylsulfonylbenzoic acid. H2O2/DBD gave significantly different degradation products than other catalytic systems. Dominant degradation products in other systems were not identified in system with hydrogen peroxide, which supported the fact that the highest mineralization efficiency was achieved with peroxide catalytic system. Global toxicity of samples after degradation in each system was determined using Artemia sauna and they could be considered as "non toxic".",
publisher = "Elsevier Science Sa, Lausanne",
journal = "Chemical Engineering Journal",
title = "Effect of different catalysts on mesotrione degradation in water falling film DBD reactor",
volume = "248",
pages = "63-70",
doi = "10.1016/j.cej.2014.03.031"
}
Jović, M., Dojčinović, B., Kovačević, V. V., Obradović, B. M., Kuraica, M. M., Gašić, U.,& Roglić, G.. (2014). Effect of different catalysts on mesotrione degradation in water falling film DBD reactor. in Chemical Engineering Journal
Elsevier Science Sa, Lausanne., 248, 63-70.
https://doi.org/10.1016/j.cej.2014.03.031
Jović M, Dojčinović B, Kovačević VV, Obradović BM, Kuraica MM, Gašić U, Roglić G. Effect of different catalysts on mesotrione degradation in water falling film DBD reactor. in Chemical Engineering Journal. 2014;248:63-70.
doi:10.1016/j.cej.2014.03.031 .
Jović, Milica, Dojčinović, Biljana, Kovačević, Vesna V., Obradović, Bratislav M., Kuraica, Milorad M., Gašić, Uroš, Roglić, Goran, "Effect of different catalysts on mesotrione degradation in water falling film DBD reactor" in Chemical Engineering Journal, 248 (2014):63-70,
https://doi.org/10.1016/j.cej.2014.03.031 . .

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB