CER - Central Repository
Institute of Chemistry, Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Removal of Tc-99(VII) by organo-modified bentonite

Authorized Users Only
2014
Authors
Milutinović Nikolić, Aleksandra
Maksin, Danijela
Jović-Jovičić, Nataša
Mirkovic, M.
Stanković, Dragana
Mojović, Zorica
Banković, Predrag
Article (Published version)
Metadata
Show full item record
Abstract
(99)Technetium is one of the largest components of nuclear waste material. In aqueous solutions Tc-99 is present as the pertechnetate oxoanion, (TcO4-)-Tc-99, which is highly soluble and mobile in groundwater under oxidizing conditions, thus posing a major environmental concern. In this study, a series of organo-modified bentonite clay samples was tested as adsorbents for the removal of radioactive (TcO4-)-Tc-99 from aqueous solution at room temperature. The influence of the hexadecyl trimethylammonium (HDTMA)/bentonite ratio on the adsorption ability of the organobentonites was investigated. It was found that the adsorbent in which the exchangeable cations were only partially substituted with HDTMA showed very low affinity toward pertechnetate. On the other hand, the adsorbents in which the HDTMA loading exceeded the cation exchange capacity (CEC) value had high efficiency. The behavior of such adsorbents was best described by a Freundlich isotherm, while for the sample in which the H...DTMA loading was equal to the CEC, the linear adsorption isotherm was the most appropriate. The difference in adsorption performance of several adsorbents was discussed from the point of view of the interlayer arrangement of the HDTMA. The kinetics of pertechnetate adsorption on HDTMA-bentonites was tested and analyzed using different surface reaction- and diffusion-based kinetic models. For all the investigated adsorbents, the most appropriate kinetic model was the pseudo-second-order kinetics model. The obtained adsorption capacities were and HDTMA-bentonites with HDTMA loadings exceeding CEC value should be regarded as very promising adsorbents for the remediation of Tc-99 polluted waters.

Keywords:
Adsorption / Isotherm / Kinetics / Organobentonites / Pertechnetate / Radioactive waste
Source:
Applied Clay Science, 2014, 95, 294-302
Publisher:
  • Elsevier
Funding / projects:
  • Advanced technologies for monitoring and environmental protection from chemical pollutants and radiation burden (RS-43009)
  • Nanostructured Functional and Composite Materials in Catalytic and Sorption Processes (RS-45001)

DOI: 10.1016/j.clay.2014.04.027

ISSN: 0169-1317

WoS: 000338612200038

Scopus: 2-s2.0-84902110777
[ Google Scholar ]
27
22
URI
https://cer.ihtm.bg.ac.rs/handle/123456789/1569
Collections
  • Radovi istraživača / Researchers' publications
Institution/Community
IHTM
TY  - JOUR
AU  - Milutinović Nikolić, Aleksandra
AU  - Maksin, Danijela
AU  - Jović-Jovičić, Nataša
AU  - Mirkovic, M.
AU  - Stanković, Dragana
AU  - Mojović, Zorica
AU  - Banković, Predrag
PY  - 2014
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1569
AB  - (99)Technetium is one of the largest components of nuclear waste material. In aqueous solutions Tc-99 is present as the pertechnetate oxoanion, (TcO4-)-Tc-99, which is highly soluble and mobile in groundwater under oxidizing conditions, thus posing a major environmental concern. In this study, a series of organo-modified bentonite clay samples was tested as adsorbents for the removal of radioactive (TcO4-)-Tc-99 from aqueous solution at room temperature. The influence of the hexadecyl trimethylammonium (HDTMA)/bentonite ratio on the adsorption ability of the organobentonites was investigated. It was found that the adsorbent in which the exchangeable cations were only partially substituted with HDTMA showed very low affinity toward pertechnetate. On the other hand, the adsorbents in which the HDTMA loading exceeded the cation exchange capacity (CEC) value had high efficiency. The behavior of such adsorbents was best described by a Freundlich isotherm, while for the sample in which the HDTMA loading was equal to the CEC, the linear adsorption isotherm was the most appropriate. The difference in adsorption performance of several adsorbents was discussed from the point of view of the interlayer arrangement of the HDTMA. The kinetics of pertechnetate adsorption on HDTMA-bentonites was tested and analyzed using different surface reaction- and diffusion-based kinetic models. For all the investigated adsorbents, the most appropriate kinetic model was the pseudo-second-order kinetics model. The obtained adsorption capacities were and HDTMA-bentonites with HDTMA loadings exceeding CEC value should be regarded as very promising adsorbents for the remediation of Tc-99 polluted waters.
PB  - Elsevier
T2  - Applied Clay Science
T1  - Removal of Tc-99(VII) by organo-modified bentonite
VL  - 95
SP  - 294
EP  - 302
DO  - 10.1016/j.clay.2014.04.027
ER  - 
@article{
author = "Milutinović Nikolić, Aleksandra and Maksin, Danijela and Jović-Jovičić, Nataša and Mirkovic, M. and Stanković, Dragana and Mojović, Zorica and Banković, Predrag",
year = "2014",
abstract = "(99)Technetium is one of the largest components of nuclear waste material. In aqueous solutions Tc-99 is present as the pertechnetate oxoanion, (TcO4-)-Tc-99, which is highly soluble and mobile in groundwater under oxidizing conditions, thus posing a major environmental concern. In this study, a series of organo-modified bentonite clay samples was tested as adsorbents for the removal of radioactive (TcO4-)-Tc-99 from aqueous solution at room temperature. The influence of the hexadecyl trimethylammonium (HDTMA)/bentonite ratio on the adsorption ability of the organobentonites was investigated. It was found that the adsorbent in which the exchangeable cations were only partially substituted with HDTMA showed very low affinity toward pertechnetate. On the other hand, the adsorbents in which the HDTMA loading exceeded the cation exchange capacity (CEC) value had high efficiency. The behavior of such adsorbents was best described by a Freundlich isotherm, while for the sample in which the HDTMA loading was equal to the CEC, the linear adsorption isotherm was the most appropriate. The difference in adsorption performance of several adsorbents was discussed from the point of view of the interlayer arrangement of the HDTMA. The kinetics of pertechnetate adsorption on HDTMA-bentonites was tested and analyzed using different surface reaction- and diffusion-based kinetic models. For all the investigated adsorbents, the most appropriate kinetic model was the pseudo-second-order kinetics model. The obtained adsorption capacities were and HDTMA-bentonites with HDTMA loadings exceeding CEC value should be regarded as very promising adsorbents for the remediation of Tc-99 polluted waters.",
publisher = "Elsevier",
journal = "Applied Clay Science",
title = "Removal of Tc-99(VII) by organo-modified bentonite",
volume = "95",
pages = "294-302",
doi = "10.1016/j.clay.2014.04.027"
}
Milutinović Nikolić, A., Maksin, D., Jović-Jovičić, N., Mirkovic, M., Stanković, D., Mojović, Z.,& Banković, P.. (2014). Removal of Tc-99(VII) by organo-modified bentonite. in Applied Clay Science
Elsevier., 95, 294-302.
https://doi.org/10.1016/j.clay.2014.04.027
Milutinović Nikolić A, Maksin D, Jović-Jovičić N, Mirkovic M, Stanković D, Mojović Z, Banković P. Removal of Tc-99(VII) by organo-modified bentonite. in Applied Clay Science. 2014;95:294-302.
doi:10.1016/j.clay.2014.04.027 .
Milutinović Nikolić, Aleksandra, Maksin, Danijela, Jović-Jovičić, Nataša, Mirkovic, M., Stanković, Dragana, Mojović, Zorica, Banković, Predrag, "Removal of Tc-99(VII) by organo-modified bentonite" in Applied Clay Science, 95 (2014):294-302,
https://doi.org/10.1016/j.clay.2014.04.027 . .

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB