CER - Central Repository
Institute of Chemistry, Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Insight into the Effect of Sn on CO and Formic Acid Oxidation at PtSn Catalysts

Authorized Users Only
2014
Authors
Stevanović, Sanja
Tripković, Dušan
Tripković, Vladimir
Minić, Dragica M.
Gavrilović, Aleksandra
Tripković, Amalija
Jovanović, Vladislava M.
Article (Published version)
Metadata
Show full item record
Abstract
The role of Sn on the catalytic activity for CO and formic acid oxidation is studied by comparing the activities of differently treated PtSn/C and Pt/C catalysts. The catalysts are prepared by a microwave-assisted polyol synthesis method. As revealed by scanning tunneling and transmission electron microscopic (STM and TEM) characterization, the outcomes of the synthesis procedure for both Pt and PtSn are small particles, similar to 1.5 nm in diameter. Upon deposition on the carbon support, the particle size increases to similar to 2.5 nm due to sintering. X-ray diffraction (XRD) analysis shows that PtSn/C has a low alloying degree and is mainly composed of Pt and Pt3Sn phases. The remaining Sn is present in the form of very small tin oxide particles. Different surfaces are obtained by double-layer, oxide, and CO annealing of the Pt/C and PtSn/C catalysts and by modifying the CO-annealed surfaces with irreversibly adsorbed tin, Sn-irr. The presence of Sn in any form (oxide, alloyed, or ...Sn-irr) on the surface shifts the onset potential for the CO oxidation negatively by more than 0.4 V in comparison to equivalently treated Pt/C catalysts. For the CO-annealed PtSn/C catalyst, a so-called skeleton structure, Sn is present only in the subsurface layers. The subsurface Sn has a mild effect on the CO activity, and hence the onset potential is only marginally shifted to cathodic potentials by similar to 50 mV compared to that on Pt/C. The formic acid oxidation is enhanced at any of the PtSn/C surfaces with Sn in the surface layer. The activity enhancement is explained by a reduced CO poisoning of the surface Pt sites. As a consequence, the current is not entering plateau as on the Pt/C catalysts. Furthermore, the skeleton PtSn/C similar to 2 is times more active than similarly treated Pt/C. The results have been substantiated and explained by comprehensive density functional theory (DFT) simulations. The DFT results indicate that the increased oxidation rates are not only due to surface Sn but also due to a weakened CO binding in the vicinity of the surface SnOHx moieties and SnO2 particles.

Source:
Journal of Physical Chemistry C, 2014, 118, 1, 278-289
Publisher:
  • American Chemical Society (ACS)
Funding / projects:
  • New approach in designing materials for energy conversion and energy storage systems (RS-172060)
  • Danish Center for Scientific Computing
  • Danish Council for Technology and Innovation's FTP program
  • Strategic Electrochemistry Research Center

DOI: 10.1021/jp408207u

ISSN: 1932-7447

WoS: 000329678200032

Scopus: 2-s2.0-84892581275
[ Google Scholar ]
39
34
URI
https://cer.ihtm.bg.ac.rs/handle/123456789/1526
Collections
  • Radovi istraživača / Researchers' publications
Institution/Community
IHTM
TY  - JOUR
AU  - Stevanović, Sanja
AU  - Tripković, Dušan
AU  - Tripković, Vladimir
AU  - Minić, Dragica M.
AU  - Gavrilović, Aleksandra
AU  - Tripković, Amalija
AU  - Jovanović, Vladislava M.
PY  - 2014
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1526
AB  - The role of Sn on the catalytic activity for CO and formic acid oxidation is studied by comparing the activities of differently treated PtSn/C and Pt/C catalysts. The catalysts are prepared by a microwave-assisted polyol synthesis method. As revealed by scanning tunneling and transmission electron microscopic (STM and TEM) characterization, the outcomes of the synthesis procedure for both Pt and PtSn are small particles, similar to 1.5 nm in diameter. Upon deposition on the carbon support, the particle size increases to similar to 2.5 nm due to sintering. X-ray diffraction (XRD) analysis shows that PtSn/C has a low alloying degree and is mainly composed of Pt and Pt3Sn phases. The remaining Sn is present in the form of very small tin oxide particles. Different surfaces are obtained by double-layer, oxide, and CO annealing of the Pt/C and PtSn/C catalysts and by modifying the CO-annealed surfaces with irreversibly adsorbed tin, Sn-irr. The presence of Sn in any form (oxide, alloyed, or Sn-irr) on the surface shifts the onset potential for the CO oxidation negatively by more than 0.4 V in comparison to equivalently treated Pt/C catalysts. For the CO-annealed PtSn/C catalyst, a so-called skeleton structure, Sn is present only in the subsurface layers. The subsurface Sn has a mild effect on the CO activity, and hence the onset potential is only marginally shifted to cathodic potentials by similar to 50 mV compared to that on Pt/C. The formic acid oxidation is enhanced at any of the PtSn/C surfaces with Sn in the surface layer. The activity enhancement is explained by a reduced CO poisoning of the surface Pt sites. As a consequence, the current is not entering plateau as on the Pt/C catalysts. Furthermore, the skeleton PtSn/C similar to 2 is times more active than similarly treated Pt/C. The results have been substantiated and explained by comprehensive density functional theory (DFT) simulations. The DFT results indicate that the increased oxidation rates are not only due to surface Sn but also due to a weakened CO binding in the vicinity of the surface SnOHx moieties and SnO2 particles.
PB  - American Chemical Society (ACS)
T2  - Journal of Physical Chemistry C
T1  - Insight into the Effect of Sn on CO and Formic Acid Oxidation at PtSn Catalysts
VL  - 118
IS  - 1
SP  - 278
EP  - 289
DO  - 10.1021/jp408207u
ER  - 
@article{
author = "Stevanović, Sanja and Tripković, Dušan and Tripković, Vladimir and Minić, Dragica M. and Gavrilović, Aleksandra and Tripković, Amalija and Jovanović, Vladislava M.",
year = "2014",
abstract = "The role of Sn on the catalytic activity for CO and formic acid oxidation is studied by comparing the activities of differently treated PtSn/C and Pt/C catalysts. The catalysts are prepared by a microwave-assisted polyol synthesis method. As revealed by scanning tunneling and transmission electron microscopic (STM and TEM) characterization, the outcomes of the synthesis procedure for both Pt and PtSn are small particles, similar to 1.5 nm in diameter. Upon deposition on the carbon support, the particle size increases to similar to 2.5 nm due to sintering. X-ray diffraction (XRD) analysis shows that PtSn/C has a low alloying degree and is mainly composed of Pt and Pt3Sn phases. The remaining Sn is present in the form of very small tin oxide particles. Different surfaces are obtained by double-layer, oxide, and CO annealing of the Pt/C and PtSn/C catalysts and by modifying the CO-annealed surfaces with irreversibly adsorbed tin, Sn-irr. The presence of Sn in any form (oxide, alloyed, or Sn-irr) on the surface shifts the onset potential for the CO oxidation negatively by more than 0.4 V in comparison to equivalently treated Pt/C catalysts. For the CO-annealed PtSn/C catalyst, a so-called skeleton structure, Sn is present only in the subsurface layers. The subsurface Sn has a mild effect on the CO activity, and hence the onset potential is only marginally shifted to cathodic potentials by similar to 50 mV compared to that on Pt/C. The formic acid oxidation is enhanced at any of the PtSn/C surfaces with Sn in the surface layer. The activity enhancement is explained by a reduced CO poisoning of the surface Pt sites. As a consequence, the current is not entering plateau as on the Pt/C catalysts. Furthermore, the skeleton PtSn/C similar to 2 is times more active than similarly treated Pt/C. The results have been substantiated and explained by comprehensive density functional theory (DFT) simulations. The DFT results indicate that the increased oxidation rates are not only due to surface Sn but also due to a weakened CO binding in the vicinity of the surface SnOHx moieties and SnO2 particles.",
publisher = "American Chemical Society (ACS)",
journal = "Journal of Physical Chemistry C",
title = "Insight into the Effect of Sn on CO and Formic Acid Oxidation at PtSn Catalysts",
volume = "118",
number = "1",
pages = "278-289",
doi = "10.1021/jp408207u"
}
Stevanović, S., Tripković, D., Tripković, V., Minić, D. M., Gavrilović, A., Tripković, A.,& Jovanović, V. M.. (2014). Insight into the Effect of Sn on CO and Formic Acid Oxidation at PtSn Catalysts. in Journal of Physical Chemistry C
American Chemical Society (ACS)., 118(1), 278-289.
https://doi.org/10.1021/jp408207u
Stevanović S, Tripković D, Tripković V, Minić DM, Gavrilović A, Tripković A, Jovanović VM. Insight into the Effect of Sn on CO and Formic Acid Oxidation at PtSn Catalysts. in Journal of Physical Chemistry C. 2014;118(1):278-289.
doi:10.1021/jp408207u .
Stevanović, Sanja, Tripković, Dušan, Tripković, Vladimir, Minić, Dragica M., Gavrilović, Aleksandra, Tripković, Amalija, Jovanović, Vladislava M., "Insight into the Effect of Sn on CO and Formic Acid Oxidation at PtSn Catalysts" in Journal of Physical Chemistry C, 118, no. 1 (2014):278-289,
https://doi.org/10.1021/jp408207u . .

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB