Solid circulation rate and particle collisions in quasi two-dimensional water fluidized beds of spherical particles
Authorized Users Only
2014
Authors
Kaluđerović-Radoičić, Tatjana
Đuriš, Mihal

Garić Grulović, Radmila

Arsenijević, Zorana

Grbavčić, Željko
Article (Published version)

Metadata
Show full item recordAbstract
The equations for the overall particle circulation rate and the frequency of particle-particle collisions in the quasi two-dimenional water-fluidized bed were proposed. The equations were based on the experimental results obtained from the water fluidized beds of mono-sized spherical glass particles d(p) = 1.94, 2.98,4.00 and 6.00 mm in diameter and the correlation for the mean particle speed from our previous paper [14] The optimal porosity of the fluidized bed was defined as the porosity at which the overall circulation rate or the frequency of collisions shows their maximum. The optimal porosities were calcylated from the derivatives of the proposed correlations. The calculated optimal porosity was in the range 0.68-0.72 for the overall circulation rate, and 0.59-0.64 for the frequency of particle-particle collisions. The results obtained are in accordance with the experimental findings from the literature [2,3,23] which show that the maximum values of the heat and mass transport co...efficients in the liquid fluidized beds are reached in the range of porosities between 0.6 and 0.8. By visual observations of the monolayer fluidized bed of spherical particles 10 mm in diameter we concluded that the collisions in the liquid fluidized beds in most cases are not pairwise, but that the particles which collide often move together for some time in agglomerates before separating. The majority of collisions in fluidized beds differ very much from the instantaneous collisions as regarded in the kinetic theory of gases. Therefore, the overall circulation rate is a better measure of the dynamics of the fluidized bed and the intensity of transport properties than the frequency of collisions.
Keywords:
Water fluidized bed / Spherical particles / Overall circulation rate / Frequency of collisions / Transport properties intensitySource:
Powder Technology, 2014, 253, 295-303Publisher:
- Elsevier
Funding / projects:
DOI: 10.1016/j.powtec.2013.11.038
ISSN: 0032-5910
WoS: 000332430600041
Scopus: 2-s2.0-84890611610
Collections
Institution/Community
IHTMTY - JOUR AU - Kaluđerović-Radoičić, Tatjana AU - Đuriš, Mihal AU - Garić Grulović, Radmila AU - Arsenijević, Zorana AU - Grbavčić, Željko PY - 2014 UR - https://cer.ihtm.bg.ac.rs/handle/123456789/1500 AB - The equations for the overall particle circulation rate and the frequency of particle-particle collisions in the quasi two-dimenional water-fluidized bed were proposed. The equations were based on the experimental results obtained from the water fluidized beds of mono-sized spherical glass particles d(p) = 1.94, 2.98,4.00 and 6.00 mm in diameter and the correlation for the mean particle speed from our previous paper [14] The optimal porosity of the fluidized bed was defined as the porosity at which the overall circulation rate or the frequency of collisions shows their maximum. The optimal porosities were calcylated from the derivatives of the proposed correlations. The calculated optimal porosity was in the range 0.68-0.72 for the overall circulation rate, and 0.59-0.64 for the frequency of particle-particle collisions. The results obtained are in accordance with the experimental findings from the literature [2,3,23] which show that the maximum values of the heat and mass transport coefficients in the liquid fluidized beds are reached in the range of porosities between 0.6 and 0.8. By visual observations of the monolayer fluidized bed of spherical particles 10 mm in diameter we concluded that the collisions in the liquid fluidized beds in most cases are not pairwise, but that the particles which collide often move together for some time in agglomerates before separating. The majority of collisions in fluidized beds differ very much from the instantaneous collisions as regarded in the kinetic theory of gases. Therefore, the overall circulation rate is a better measure of the dynamics of the fluidized bed and the intensity of transport properties than the frequency of collisions. PB - Elsevier T2 - Powder Technology T1 - Solid circulation rate and particle collisions in quasi two-dimensional water fluidized beds of spherical particles VL - 253 SP - 295 EP - 303 DO - 10.1016/j.powtec.2013.11.038 ER -
@article{ author = "Kaluđerović-Radoičić, Tatjana and Đuriš, Mihal and Garić Grulović, Radmila and Arsenijević, Zorana and Grbavčić, Željko", year = "2014", abstract = "The equations for the overall particle circulation rate and the frequency of particle-particle collisions in the quasi two-dimenional water-fluidized bed were proposed. The equations were based on the experimental results obtained from the water fluidized beds of mono-sized spherical glass particles d(p) = 1.94, 2.98,4.00 and 6.00 mm in diameter and the correlation for the mean particle speed from our previous paper [14] The optimal porosity of the fluidized bed was defined as the porosity at which the overall circulation rate or the frequency of collisions shows their maximum. The optimal porosities were calcylated from the derivatives of the proposed correlations. The calculated optimal porosity was in the range 0.68-0.72 for the overall circulation rate, and 0.59-0.64 for the frequency of particle-particle collisions. The results obtained are in accordance with the experimental findings from the literature [2,3,23] which show that the maximum values of the heat and mass transport coefficients in the liquid fluidized beds are reached in the range of porosities between 0.6 and 0.8. By visual observations of the monolayer fluidized bed of spherical particles 10 mm in diameter we concluded that the collisions in the liquid fluidized beds in most cases are not pairwise, but that the particles which collide often move together for some time in agglomerates before separating. The majority of collisions in fluidized beds differ very much from the instantaneous collisions as regarded in the kinetic theory of gases. Therefore, the overall circulation rate is a better measure of the dynamics of the fluidized bed and the intensity of transport properties than the frequency of collisions.", publisher = "Elsevier", journal = "Powder Technology", title = "Solid circulation rate and particle collisions in quasi two-dimensional water fluidized beds of spherical particles", volume = "253", pages = "295-303", doi = "10.1016/j.powtec.2013.11.038" }
Kaluđerović-Radoičić, T., Đuriš, M., Garić Grulović, R., Arsenijević, Z.,& Grbavčić, Ž.. (2014). Solid circulation rate and particle collisions in quasi two-dimensional water fluidized beds of spherical particles. in Powder Technology Elsevier., 253, 295-303. https://doi.org/10.1016/j.powtec.2013.11.038
Kaluđerović-Radoičić T, Đuriš M, Garić Grulović R, Arsenijević Z, Grbavčić Ž. Solid circulation rate and particle collisions in quasi two-dimensional water fluidized beds of spherical particles. in Powder Technology. 2014;253:295-303. doi:10.1016/j.powtec.2013.11.038 .
Kaluđerović-Radoičić, Tatjana, Đuriš, Mihal, Garić Grulović, Radmila, Arsenijević, Zorana, Grbavčić, Željko, "Solid circulation rate and particle collisions in quasi two-dimensional water fluidized beds of spherical particles" in Powder Technology, 253 (2014):295-303, https://doi.org/10.1016/j.powtec.2013.11.038 . .