CER - Central Repository
Institute of Chemistry, Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

STRUCTURE AND PROPERTIES OF NANOSIZE NiFe2O4 PREPARED BY TEMPLATE AND PRECIPITATION METHODS

Thumbnail
2013
1242.pdf (515.0Kb)
Authors
Cosovic, A.
Ćosović, Vladan
Žak, Tomas
David, B.
Talijan, Nadežda M.
Article (Published version)
Metadata
Show full item record
Abstract
Nanosize NiFe2O4 was prepared by template method and precipitation process using same starting materials. The use of soluble starch in both synthesis routes was investigated. The amount of the used precipitating agent (Na2CO3) for the precipitation approach was selected according to two adopted scenarios based on theoretical and average yield of possible side reaction expressed by the degree of substitution (DS). The results of SEM microstructural analysis of the prepared Ni-ferrite powders demonstrate evident influence of the applied preparation method whereas high-magnification FE-SEM images show very similar fine-grained structures characterized by different size of particles. According to the results of XRD analysis, the obtained ferrite powders exhibit only slight differences in phase composition with calculated crystallite size for template sample d(XRD) = 36 nm and for the both precipitation route samples d(XRD) = 21 nm. Additional sample characterization using Fe-57 Mossbauer s...pectroscopy supports the findings of the microstructural and XRD analysis. The "clearest" spectrum was obtained for the template sample while the strongest influence of nanocrystalline component was observed for the sample prepared with maximal amount of precipitation agent (DS=3). The room temperature magnetic hysteresis loops, recorded using vibrating sample magnetometer (VSM), are very similar and exhibit characteristic shape with values of magnetic properties within expected range for this type of material.

Keywords:
Nanosized NiFe2O4 / Template method / Precipitation route / Microstructure / Phase composition / Magnetic properties
Source:
Journal of Mining and Metallurgy B: Metallurgy, 2013, 49, 3, 271-277
Publisher:
  • Technical Faculty, Bor
Funding / projects:
  • Advanced multicomponent metal systems and nanostructured materials with diverse functional properties (RS-172037)
  • Developing technological processes for nonstandard copper concentrates processing with the aim to decrease pollutants emission (RS-34023)
  • Grant Agency of the Czech Republic - GAP108/11/1350
  • European Regional Development Fund - CZ.1.05/1.1.00/02.0068

DOI: 10.2298/JMMB130313021C

ISSN: 1450-5339

WoS: 000331787800005

Scopus: 2-s2.0-84897658448
[ Google Scholar ]
7
8
URI
https://cer.ihtm.bg.ac.rs/handle/123456789/1244
Collections
  • Radovi istraživača / Researchers' publications
Institution/Community
IHTM
TY  - JOUR
AU  - Cosovic, A.
AU  - Ćosović, Vladan
AU  - Žak, Tomas
AU  - David, B.
AU  - Talijan, Nadežda M.
PY  - 2013
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1244
AB  - Nanosize NiFe2O4 was prepared by template method and precipitation process using same starting materials. The use of soluble starch in both synthesis routes was investigated. The amount of the used precipitating agent (Na2CO3) for the precipitation approach was selected according to two adopted scenarios based on theoretical and average yield of possible side reaction expressed by the degree of substitution (DS). The results of SEM microstructural analysis of the prepared Ni-ferrite powders demonstrate evident influence of the applied preparation method whereas high-magnification FE-SEM images show very similar fine-grained structures characterized by different size of particles. According to the results of XRD analysis, the obtained ferrite powders exhibit only slight differences in phase composition with calculated crystallite size for template sample d(XRD) = 36 nm and for the both precipitation route samples d(XRD) = 21 nm. Additional sample characterization using Fe-57 Mossbauer spectroscopy supports the findings of the microstructural and XRD analysis. The "clearest" spectrum was obtained for the template sample while the strongest influence of nanocrystalline component was observed for the sample prepared with maximal amount of precipitation agent (DS=3). The room temperature magnetic hysteresis loops, recorded using vibrating sample magnetometer (VSM), are very similar and exhibit characteristic shape with values of magnetic properties within expected range for this type of material.
PB  - Technical Faculty, Bor
T2  - Journal of Mining and Metallurgy B: Metallurgy
T1  - STRUCTURE AND PROPERTIES OF NANOSIZE NiFe2O4 PREPARED BY TEMPLATE AND PRECIPITATION METHODS
VL  - 49
IS  - 3
SP  - 271
EP  - 277
DO  - 10.2298/JMMB130313021C
ER  - 
@article{
author = "Cosovic, A. and Ćosović, Vladan and Žak, Tomas and David, B. and Talijan, Nadežda M.",
year = "2013",
abstract = "Nanosize NiFe2O4 was prepared by template method and precipitation process using same starting materials. The use of soluble starch in both synthesis routes was investigated. The amount of the used precipitating agent (Na2CO3) for the precipitation approach was selected according to two adopted scenarios based on theoretical and average yield of possible side reaction expressed by the degree of substitution (DS). The results of SEM microstructural analysis of the prepared Ni-ferrite powders demonstrate evident influence of the applied preparation method whereas high-magnification FE-SEM images show very similar fine-grained structures characterized by different size of particles. According to the results of XRD analysis, the obtained ferrite powders exhibit only slight differences in phase composition with calculated crystallite size for template sample d(XRD) = 36 nm and for the both precipitation route samples d(XRD) = 21 nm. Additional sample characterization using Fe-57 Mossbauer spectroscopy supports the findings of the microstructural and XRD analysis. The "clearest" spectrum was obtained for the template sample while the strongest influence of nanocrystalline component was observed for the sample prepared with maximal amount of precipitation agent (DS=3). The room temperature magnetic hysteresis loops, recorded using vibrating sample magnetometer (VSM), are very similar and exhibit characteristic shape with values of magnetic properties within expected range for this type of material.",
publisher = "Technical Faculty, Bor",
journal = "Journal of Mining and Metallurgy B: Metallurgy",
title = "STRUCTURE AND PROPERTIES OF NANOSIZE NiFe2O4 PREPARED BY TEMPLATE AND PRECIPITATION METHODS",
volume = "49",
number = "3",
pages = "271-277",
doi = "10.2298/JMMB130313021C"
}
Cosovic, A., Ćosović, V., Žak, T., David, B.,& Talijan, N. M.. (2013). STRUCTURE AND PROPERTIES OF NANOSIZE NiFe2O4 PREPARED BY TEMPLATE AND PRECIPITATION METHODS. in Journal of Mining and Metallurgy B: Metallurgy
Technical Faculty, Bor., 49(3), 271-277.
https://doi.org/10.2298/JMMB130313021C
Cosovic A, Ćosović V, Žak T, David B, Talijan NM. STRUCTURE AND PROPERTIES OF NANOSIZE NiFe2O4 PREPARED BY TEMPLATE AND PRECIPITATION METHODS. in Journal of Mining and Metallurgy B: Metallurgy. 2013;49(3):271-277.
doi:10.2298/JMMB130313021C .
Cosovic, A., Ćosović, Vladan, Žak, Tomas, David, B., Talijan, Nadežda M., "STRUCTURE AND PROPERTIES OF NANOSIZE NiFe2O4 PREPARED BY TEMPLATE AND PRECIPITATION METHODS" in Journal of Mining and Metallurgy B: Metallurgy, 49, no. 3 (2013):271-277,
https://doi.org/10.2298/JMMB130313021C . .

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB