CER - Central Repository
Institute of Chemistry, Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Oxidation of carbon monoxide and formic acid on bulk and nanosized Pt-Co alloys

Authorized Users Only
2012
Authors
Obradović, Maja
Tripković, Amalija
Gojković, Snežana Lj.
Article (Published version)
Metadata
Show full item record
Abstract
Bulk Pt3Co and nanosized Pt3Co and PtCo alloys supported on high area carbon were investigated as the electrocatalysts for the COads and HCOOH oxidation. Pt3Co alloy with Co electrochemically leached from the surface (Pt skeleton) was employed to separate electronic from ensemble and bifunctional effects of Co. Cyclic voltammetry in 0.1 M HClO4 showed reduced amount of adsorbed hydrogen on Pt sites on Pt3Co alloy compared to pure Pt. However, no significant difference in hydrogen adsorption/desorption and Pt-oxide reduction features between Pt3Co with Pt skeleton structure and bulk Pt was observed. The oxidation of COads on Pt3Co alloy commenced earlier than on Pt, but this effect on Pt3Co with Pt skeleton structure was minor indicating that bifunctional mechanism is stronger than the electronic modification of Pt by Co. The HCOOH oxidation rate on Pt3Co alloy was about seven times higher than on bulk Pt when the reaction rates were compared at 0.4 V, i.e., in the middle of the potenti...al range for the HCOOH oxidation. Like in the case of COads oxidation, Pt skeleton showed similar activity as bulk Pt indicating that the ensemble effect is responsible for the enhanced activity of Pt3Co alloy toward HCOOH oxidation. The comparison of COads and HCOOH oxidation on Pt3Co/C and PtCo/C with the same reaction on Pt/C were qualitatively the same as on bulk materials.

Keywords:
Platinum-cobalt alloy / Formic acid / Carbon monoxide / Electrochemical oxidation / Electronic effect / Ensemble effect
Source:
Journal of Solid State Electrochemistry, 2012, 16, 2, 587-595
Publisher:
  • Springer, New York
Funding / projects:
  • New approach in designing materials for energy conversion and energy storage systems (RS-172060)

DOI: 10.1007/s10008-011-1389-5

ISSN: 1432-8488

WoS: 000301040900024

Scopus: 2-s2.0-85027958661
[ Google Scholar ]
15
13
URI
https://cer.ihtm.bg.ac.rs/handle/123456789/1036
Collections
  • Radovi istraživača / Researchers' publications
Institution/Community
IHTM
TY  - JOUR
AU  - Obradović, Maja
AU  - Tripković, Amalija
AU  - Gojković, Snežana Lj.
PY  - 2012
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1036
AB  - Bulk Pt3Co and nanosized Pt3Co and PtCo alloys supported on high area carbon were investigated as the electrocatalysts for the COads and HCOOH oxidation. Pt3Co alloy with Co electrochemically leached from the surface (Pt skeleton) was employed to separate electronic from ensemble and bifunctional effects of Co. Cyclic voltammetry in 0.1 M HClO4 showed reduced amount of adsorbed hydrogen on Pt sites on Pt3Co alloy compared to pure Pt. However, no significant difference in hydrogen adsorption/desorption and Pt-oxide reduction features between Pt3Co with Pt skeleton structure and bulk Pt was observed. The oxidation of COads on Pt3Co alloy commenced earlier than on Pt, but this effect on Pt3Co with Pt skeleton structure was minor indicating that bifunctional mechanism is stronger than the electronic modification of Pt by Co. The HCOOH oxidation rate on Pt3Co alloy was about seven times higher than on bulk Pt when the reaction rates were compared at 0.4 V, i.e., in the middle of the potential range for the HCOOH oxidation. Like in the case of COads oxidation, Pt skeleton showed similar activity as bulk Pt indicating that the ensemble effect is responsible for the enhanced activity of Pt3Co alloy toward HCOOH oxidation. The comparison of COads and HCOOH oxidation on Pt3Co/C and PtCo/C with the same reaction on Pt/C were qualitatively the same as on bulk materials.
PB  - Springer, New York
T2  - Journal of Solid State Electrochemistry
T1  - Oxidation of carbon monoxide and formic acid on bulk and nanosized Pt-Co alloys
VL  - 16
IS  - 2
SP  - 587
EP  - 595
DO  - 10.1007/s10008-011-1389-5
ER  - 
@article{
author = "Obradović, Maja and Tripković, Amalija and Gojković, Snežana Lj.",
year = "2012",
abstract = "Bulk Pt3Co and nanosized Pt3Co and PtCo alloys supported on high area carbon were investigated as the electrocatalysts for the COads and HCOOH oxidation. Pt3Co alloy with Co electrochemically leached from the surface (Pt skeleton) was employed to separate electronic from ensemble and bifunctional effects of Co. Cyclic voltammetry in 0.1 M HClO4 showed reduced amount of adsorbed hydrogen on Pt sites on Pt3Co alloy compared to pure Pt. However, no significant difference in hydrogen adsorption/desorption and Pt-oxide reduction features between Pt3Co with Pt skeleton structure and bulk Pt was observed. The oxidation of COads on Pt3Co alloy commenced earlier than on Pt, but this effect on Pt3Co with Pt skeleton structure was minor indicating that bifunctional mechanism is stronger than the electronic modification of Pt by Co. The HCOOH oxidation rate on Pt3Co alloy was about seven times higher than on bulk Pt when the reaction rates were compared at 0.4 V, i.e., in the middle of the potential range for the HCOOH oxidation. Like in the case of COads oxidation, Pt skeleton showed similar activity as bulk Pt indicating that the ensemble effect is responsible for the enhanced activity of Pt3Co alloy toward HCOOH oxidation. The comparison of COads and HCOOH oxidation on Pt3Co/C and PtCo/C with the same reaction on Pt/C were qualitatively the same as on bulk materials.",
publisher = "Springer, New York",
journal = "Journal of Solid State Electrochemistry",
title = "Oxidation of carbon monoxide and formic acid on bulk and nanosized Pt-Co alloys",
volume = "16",
number = "2",
pages = "587-595",
doi = "10.1007/s10008-011-1389-5"
}
Obradović, M., Tripković, A.,& Gojković, S. Lj.. (2012). Oxidation of carbon monoxide and formic acid on bulk and nanosized Pt-Co alloys. in Journal of Solid State Electrochemistry
Springer, New York., 16(2), 587-595.
https://doi.org/10.1007/s10008-011-1389-5
Obradović M, Tripković A, Gojković SL. Oxidation of carbon monoxide and formic acid on bulk and nanosized Pt-Co alloys. in Journal of Solid State Electrochemistry. 2012;16(2):587-595.
doi:10.1007/s10008-011-1389-5 .
Obradović, Maja, Tripković, Amalija, Gojković, Snežana Lj., "Oxidation of carbon monoxide and formic acid on bulk and nanosized Pt-Co alloys" in Journal of Solid State Electrochemistry, 16, no. 2 (2012):587-595,
https://doi.org/10.1007/s10008-011-1389-5 . .

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB