Supplementary Material

Coordination preferences of NNO and NNS Schiff base ligands with Co(III) complexes: Synthesis, characterization and DFT calculation

Darinka Darmanovića, Dušanka Radanovićb, Mima Jevtovićc, Iztok Tureld, Andrej Pevecd, Miloš Milčića, Maja Grudena, Matija Zlatarb, Nataša Đorđeviće, Katarina Anđelkovića, Božidar Čobeljića,a,*

aUniversity of Belgrade-Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia
bUniversity of Belgrade-Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia
cInnovation Centre of Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, 11000 Belgrade, Serbia
dFaculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
eInstitute for Technology of Nuclear and other Mineral Raw Materials, Franse d’Eperea 86, 11000 Belgrade, Serbia

Table S1. Selected bond lengths (Å) and angles (°) of complexes 1 and 2.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th></th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co1–N2</td>
<td>1.909(2)</td>
<td>Co1–N2</td>
<td>1.8516(15)</td>
</tr>
<tr>
<td>Co1–N6</td>
<td>1.907(2)</td>
<td>Co1–N1</td>
<td>1.9189(16)</td>
</tr>
<tr>
<td>Co1–N1</td>
<td>1.964(2)</td>
<td>Co1–O1</td>
<td>1.9272(13)</td>
</tr>
<tr>
<td>Co1–N5</td>
<td>1.953(2)</td>
<td>Co1–N11</td>
<td>1.9615(17)</td>
</tr>
<tr>
<td>Co1–S4</td>
<td>2.2257(8)</td>
<td>Co1–N8</td>
<td>1.9632(16)</td>
</tr>
<tr>
<td>Co1–S2</td>
<td>2.2230(8)</td>
<td>Co1–N5</td>
<td>1.9704(18)</td>
</tr>
<tr>
<td>S2–C6</td>
<td>1.738(3)</td>
<td>O1–C8</td>
<td>1.289(2)</td>
</tr>
</tbody>
</table>

* Corresponding author.
E-mail address: bozidar@chem.bg.ac.rs (B. Čobeljić)
<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance (Å)</th>
<th>Bond</th>
<th>Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S4–C12</td>
<td>1.743(3)</td>
<td>N3–C8</td>
<td>1.313(2)</td>
</tr>
<tr>
<td>N7–C12</td>
<td>1.315(4)</td>
<td>N2–C6</td>
<td>1.291(2)</td>
</tr>
<tr>
<td>N3–C6</td>
<td>1.326(4)</td>
<td>N2–N3</td>
<td>1.386(2)</td>
</tr>
<tr>
<td>N6–N7</td>
<td>1.380(3)</td>
<td>N5–N6</td>
<td>1.206(2)</td>
</tr>
<tr>
<td>N2–N3</td>
<td>1.372(3)</td>
<td>N6–N7</td>
<td>1.155(2)</td>
</tr>
<tr>
<td>N6–C10</td>
<td>1.296(4)</td>
<td>N8–N9</td>
<td>1.205(2)</td>
</tr>
<tr>
<td>N2–C4</td>
<td>1.303(3)</td>
<td>N9–N10</td>
<td>1.149(3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N11–N12</td>
<td>1.211(2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N12–N13</td>
<td>1.152(3)</td>
</tr>
<tr>
<td>N2–Co1–N6</td>
<td>177.20(10)</td>
<td>N2–Co1–N1</td>
<td>82.77(7)</td>
</tr>
<tr>
<td>N2–Co1–N1</td>
<td>82.42(9)</td>
<td>N2–Co1–O1</td>
<td>82.67(6)</td>
</tr>
<tr>
<td>N6–Co1–N1</td>
<td>97.94(9)</td>
<td>N1–Co1–O1</td>
<td>165.12(6)</td>
</tr>
<tr>
<td>N2–Co1–N5</td>
<td>100.58(10)</td>
<td>N2–Co1–N11</td>
<td>91.46(7)</td>
</tr>
<tr>
<td>N6–Co1–N5</td>
<td>82.22(10)</td>
<td>N1–Co1–N11</td>
<td>88.11(7)</td>
</tr>
<tr>
<td>N1–Co1–N5</td>
<td>88.49(9)</td>
<td>O1–Co1–N11</td>
<td>89.19(6)</td>
</tr>
<tr>
<td>N2–Co1–S4</td>
<td>91.75(7)</td>
<td>N2–Co1–N8</td>
<td>179.26(7)</td>
</tr>
<tr>
<td>N6–Co1–S4</td>
<td>85.46(7)</td>
<td>N1–Co1–N8</td>
<td>97.82(7)</td>
</tr>
<tr>
<td>N1–Co1–S4</td>
<td>92.00(7)</td>
<td>O1–Co1–N8</td>
<td>96.75(6)</td>
</tr>
<tr>
<td>N5–Co1–S4</td>
<td>167.61(7)</td>
<td>N11–Co1–N8</td>
<td>88.99(7)</td>
</tr>
<tr>
<td>N2–Co1–S2</td>
<td>85.79(7)</td>
<td>N2–Co1–N5</td>
<td>87.89(7)</td>
</tr>
<tr>
<td>N6–Co1–S2</td>
<td>94.04(7)</td>
<td>N1–Co1–N5</td>
<td>89.77(7)</td>
</tr>
<tr>
<td>N1–Co1–S2</td>
<td>167.55(7)</td>
<td>O1–Co1–N5</td>
<td>92.77(6)</td>
</tr>
<tr>
<td>N5–Co1–S2</td>
<td>89.78(7)</td>
<td>N11–Co1–N5</td>
<td>177.84(7)</td>
</tr>
<tr>
<td>S4–Co1–S2</td>
<td>92.32(3)</td>
<td>N8–Co1–N5</td>
<td>91.68(7)</td>
</tr>
</tbody>
</table>
Table S2. Comparison of Co-Nthiazole, Co-Nimine and Co-Sthiolate bond lengths (Å) in octahedral Co(III)-N₄S₂ complexes with thiosemicarbazone based ligands.

<table>
<thead>
<tr>
<th>Complexes</th>
<th>Co-Nthiazole mean values</th>
<th>Co-Nimine mean values</th>
<th>Co-Sthiolate mean values</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Co(L¹)₂]BF₄·H₂O (1)</td>
<td>1.964(2) 1.9585</td>
<td>1.909(2) 1.908</td>
<td>2.2230(8) 2.2243</td>
<td>this work</td>
</tr>
<tr>
<td>[Co(L¹)₂][Co(NCS)₄]·2H₂O CCDC 1854180</td>
<td>1.95(5) 1.960</td>
<td>1.903(5) 1.907</td>
<td>2.225(2) 2.222</td>
<td>[1]</td>
</tr>
<tr>
<td>[Co(L³)₂]BF₄·H₂O CCDC 1498846</td>
<td>1.945(2) 1.955</td>
<td>1.907(3) 1.905</td>
<td>2.228(1) 2.226</td>
<td>[2]</td>
</tr>
<tr>
<td>[Co(L⁴)₂]BF₄·Et₂O CCDC 1498852</td>
<td>1.978(3) 1.986</td>
<td>1.890(3) 1.890</td>
<td>2.2108(9) 2.2163</td>
<td>[2]</td>
</tr>
<tr>
<td>[Co(L⁵)₂][CoCl₄]·2H₂O CCDC 759081</td>
<td>1.933(2) 1.936</td>
<td>1.903(2) 1.9015</td>
<td>2.225(1) 2.229</td>
<td>[3]</td>
</tr>
<tr>
<td>[Co(L⁵)₂][NO₃]·H₂O CCDC 759082</td>
<td>1.936(3) 1.933</td>
<td>1.897(3) 1.900</td>
<td>2.216(1) 2.223</td>
<td>[3]</td>
</tr>
</tbody>
</table>

Co-Nthiazoline

[HL¹] = (E)-2-(1(1hiazol-2-yl)ethylidene)hydrazine-1-carbothioamide;
[HL²] = condensation product of 2-thiazolecarboxaldehyde and 4-phenylthiosemicarbazide; [HL³] = condensation product of 4-methyl-2-thiazolecarboxaldehyde and 4-phenylthiosemicarbazide; [HL⁴] = 2-acetyl-2-thiazoline thiosemicarbazone.

Table S3. Comparison of Co-N$_{py}$, Co-N$_{imine}$, Co-N$_{azide}$ and Co-O$_{enolate}$ bond lengths (Å) in octahedral Co(III)N$_4$O$_2$–Co(III)N$_2$O(N$_3$)$_3$ complexes with hydrazone and azide ligands.

<table>
<thead>
<tr>
<th>Complexes</th>
<th>Co-N$_{py}$</th>
<th>Co-N$_{imine}$</th>
<th>Co-N$_{azide}$</th>
<th>Co-O$_{enolate}$</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Co(L3)(N$_3$)$_3$] (2)</td>
<td>1.9189(16)</td>
<td>1.8516(15)</td>
<td>1.9704(18)</td>
<td>1.9272(13)</td>
<td>this work</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.9632(16)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.9615(17)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mean value:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.9650</td>
</tr>
<tr>
<td>[Co(L6)$_2$][Co(L5)(N$_3$)$_3$]$^+\cdot$CH$_3$OH</td>
<td>1.9240(14)</td>
<td>1.8606(12)</td>
<td>1.9573(15)</td>
<td>1.9235(13)</td>
<td>[1]</td>
</tr>
<tr>
<td>CCDC 828862</td>
<td>1.9170(13)</td>
<td>1.8644(13)</td>
<td>1.9633(14)</td>
<td>1.9060(12)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.9162(14)</td>
<td>1.8482(14)</td>
<td>1.9685(14)</td>
<td>1.9110(12)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mean value:</td>
<td>mean value:</td>
<td>mean value:</td>
<td>mean value:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.9190</td>
<td>1.8577</td>
<td>1.9630</td>
<td>1.9135</td>
<td></td>
</tr>
<tr>
<td>[Co(L7)$_2$][Co(L7)(N$_3$)$_3$]</td>
<td>1.916(3)</td>
<td>1.860(3)</td>
<td>1.971(3)</td>
<td>1.922(2)</td>
<td>[2]</td>
</tr>
<tr>
<td>CCDC 894063</td>
<td>1.909(3)</td>
<td>1.861(3)</td>
<td>1.949(3)</td>
<td>1.896(2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.917(3)</td>
<td>1.862(3)</td>
<td>1.956(3)</td>
<td>1.944(3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mean value:</td>
<td>mean value:</td>
<td>mean value:</td>
<td>mean value:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.914</td>
<td>1.861</td>
<td>1.959</td>
<td>1.921</td>
<td></td>
</tr>
</tbody>
</table>

HL2 = naziv liganda;

HL5 = N^e-[1E]-1-pyridin-2-ylylidene]-2-furohydrazide; HL7= methyl 2-pyridyl ketone semicarbazone.

Table S4. Hydrogen-bond parameters for complex 1.

<table>
<thead>
<tr>
<th>D–H···A</th>
<th>D–H (Å)</th>
<th>H···A (Å)</th>
<th>D···A (Å)</th>
<th>D–H···A (°)</th>
<th>Symm. operation on A</th>
</tr>
</thead>
<tbody>
<tr>
<td>N4–H4NA···N7</td>
<td>0.86</td>
<td>2.59</td>
<td>3.446(4)</td>
<td>172</td>
<td>-1/2+x, y, 3/2-z</td>
</tr>
<tr>
<td>N8–H8NA···N3</td>
<td>0.86</td>
<td>2.28</td>
<td>3.109(4)</td>
<td>162</td>
<td>1/2+x, y, 3/2-z</td>
</tr>
<tr>
<td>N4–H4NB···S4</td>
<td>0.86</td>
<td>2.81</td>
<td>3.611(3)</td>
<td>155</td>
<td>1-x,1/2+y,3/2-z</td>
</tr>
<tr>
<td>O1W–H2W···F1</td>
<td>1.01(7)</td>
<td>1.74(8)</td>
<td>2.728(7)</td>
<td>167(8)</td>
<td></td>
</tr>
<tr>
<td>O1W–H1W···N3</td>
<td>1.02(7)</td>
<td>2.01(8)</td>
<td>2.962(7)</td>
<td>155(9)</td>
<td></td>
</tr>
</tbody>
</table>

Table S5. Intermolecular π···π interaction parameters for complex 1.

<table>
<thead>
<tr>
<th>Cg(I)a</th>
<th>Cg(J)a</th>
<th>Cg(I)···Cg(J)b (Å)</th>
<th>(\alpha) (°)</th>
<th>(\beta) (°)</th>
<th>(\gamma) (°)</th>
<th>Slippaged (Å)</th>
<th>Sym. code on (J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cg(1)</td>
<td>Cg(1)</td>
<td>4.0189(16)</td>
<td>0.00(14)</td>
<td>25.9</td>
<td>25.9</td>
<td>1.755</td>
<td>1-x, 1-y, 2-z</td>
</tr>
<tr>
<td>Cg(2)</td>
<td>Cg(2)</td>
<td>3.8200(16)</td>
<td>0.00(14)</td>
<td>23.9</td>
<td>23.9</td>
<td>1.550</td>
<td>1-x, 2-y, 2-z</td>
</tr>
</tbody>
</table>

aLabels of aromatic rings: (1) = S(1),C(2),C(1),N(1),C(3); (2) = S(3),C(8),C(7),N(5),C(9).
bCg(I)···Cg(J) = Distance between ring centroids (Ang.).
c\(\alpha\) = Dihedral angle between planes (I) and (J) (Deg).
d\(\beta\) = Angle between Cg(I)–Cg(J) vector and normal to plane (I) (Deg).
e\(\gamma\) = Angle between Cg(I) –Cg(J) vector and normal to plane (J) (Deg).
Slippage = Distance between Cg(J) and perpendicular projection of Cg(J) on ring (I) (Ang).
Table S6. Intermolecular $\pi\cdots\pi$ interaction parameters for complex 2.

<table>
<thead>
<tr>
<th>Cg(I)a</th>
<th>Cg(J)a</th>
<th>Cg(I)--Cg(J)b (Å)</th>
<th>α^c (°)</th>
<th>β^d (°)</th>
<th>γ^e (°)</th>
<th>Slippagef (Å)</th>
<th>Sym. code on (J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cg(1)</td>
<td>Cg(1)</td>
<td>3.4540(13)</td>
<td>0.03(11)</td>
<td>24.3</td>
<td>24.3</td>
<td>1.419</td>
<td>1-x, 1-y, 1-z</td>
</tr>
<tr>
<td>Cg(2)</td>
<td>Cg(2)</td>
<td>3.9788(14)</td>
<td>0.00</td>
<td>28.5</td>
<td>28.5</td>
<td>1.901</td>
<td>-x, 1-y, -z</td>
</tr>
</tbody>
</table>

aLabels of aromatic rings: (1) = N(1),C(1),C(2),C(3),C(4),C(5); (2) = N(4),C(10),C(11),C(12),C(13),C(14).
bCg(I)--Cg(J) = Distance between ring centroids (Ang.).
$^c\alpha$ = Dihedral angle between planes (I) and (J) (Deg).
$^d\beta$ = Angle between Cg(I)--Cg(J) vector and normal to plane (I) (Deg).
$^e\gamma$ = Angle between Cg(I) --Cg(J) vector and normal to plane (J) (Deg).
Slippage = Distance between Cg(J) and perpendicular projection of Cg(J) on ring (I) (Ang).

Table S7. Hydrogen-bond parameters for complex 2.

<table>
<thead>
<tr>
<th>D–H···A</th>
<th>D–H (Å)</th>
<th>H···A (Å)</th>
<th>D···A (Å)</th>
<th>D–H···A (°)</th>
<th>Symm. operation on A</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1–H1···N7</td>
<td>0.95</td>
<td>2.53</td>
<td>3.341(3)</td>
<td>143</td>
<td>1+x, y, z</td>
</tr>
<tr>
<td>C7–H7B···N11</td>
<td>0.98</td>
<td>2.48</td>
<td>3.445(3)</td>
<td>167</td>
<td>1-x, -y, 1-z</td>
</tr>
<tr>
<td>C9–H9A···N10</td>
<td>0.99</td>
<td>2.54</td>
<td>3.379(3)</td>
<td>142</td>
<td>x, -1+y, z</td>
</tr>
<tr>
<td>C10–H10···N10</td>
<td>0.95</td>
<td>2.51</td>
<td>3.339(3)</td>
<td>145</td>
<td>x, -1+y, z</td>
</tr>
<tr>
<td>C12–H12···O1</td>
<td>0.95</td>
<td>2.52</td>
<td>3.272(3)</td>
<td>136</td>
<td>-x, 1-y, -z</td>
</tr>
<tr>
<td>C14–H14···N8</td>
<td>0.95</td>
<td>2.30</td>
<td>3.230(3)</td>
<td>167</td>
<td>-1+x, y, z</td>
</tr>
<tr>
<td>Intra C7–H7C···N3</td>
<td>0.98</td>
<td>2.56</td>
<td>2.935(2)</td>
<td>103</td>
<td></td>
</tr>
</tbody>
</table>
Fig. S1. (a) Crystal packing of 1 showing self-assembled complex cations within a layer parallel with the (001) lattice plane by means of intermolecular N–H···N and N–H···S hydrogen bonds and (b) Intermolecular π···π interactions between thiazole rings.
Fig. S2. Crystal packing of 2 showing 2D assembly parallel with the (10-1) lattice plane generated by intermolecular π⋯π interactions and C–H⋯N hydrogen bonds.
Cartesian coordinates of all optimized structures

All structures from Table 2 in the main text, optimized at BP86-D3BJ/Def2-TZVP-PCM(H2O) level of theory:

<table>
<thead>
<tr>
<th>39</th>
<th>[Co(L\textsubscript{1})\textsubscript{2}]+</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>0.602833 9.074593 6.401248</td>
</tr>
<tr>
<td>16</td>
<td>1.300909 7.244271 10.273337</td>
</tr>
<tr>
<td>16</td>
<td>1.319338 9.758729 4.392051</td>
</tr>
<tr>
<td>16</td>
<td>0.041220 13.142922 7.802657</td>
</tr>
<tr>
<td>16</td>
<td>-0.188263 7.168252 5.530595</td>
</tr>
<tr>
<td>7</td>
<td>0.341658 8.380562 8.195433</td>
</tr>
<tr>
<td>7</td>
<td>2.375174 8.423800 6.653640</td>
</tr>
<tr>
<td>7</td>
<td>3.347693 8.525118 5.732125</td>
</tr>
<tr>
<td>7</td>
<td>3.837305 9.295216 3.631930</td>
</tr>
<tr>
<td>1</td>
<td>4.785028 8.953561 3.757405</td>
</tr>
<tr>
<td>1</td>
<td>3.590588 9.754891 2.763841</td>
</tr>
<tr>
<td>7</td>
<td>0.929578 10.841893 7.135445</td>
</tr>
<tr>
<td>7</td>
<td>-1.168572 9.741239 6.186293</td>
</tr>
<tr>
<td>7</td>
<td>-2.178624 9.026392 5.662849</td>
</tr>
<tr>
<td>7</td>
<td>-2.745626 6.990307 4.781607</td>
</tr>
<tr>
<td>1</td>
<td>-3.692475 7.336465 4.662053</td>
</tr>
<tr>
<td>1</td>
<td>-2.527891 6.043298 4.496094</td>
</tr>
<tr>
<td>6</td>
<td>-0.694941 8.317625 9.083564</td>
</tr>
<tr>
<td>1</td>
<td>-1.671952 8.708896 8.812356</td>
</tr>
<tr>
<td>6</td>
<td>-0.357781 7.728736 10.275903</td>
</tr>
<tr>
<td>1</td>
<td>-0.985569 7.552029 11.143208</td>
</tr>
<tr>
<td>6</td>
<td>1.480305 7.851796 8.670649</td>
</tr>
<tr>
<td>6</td>
<td>2.638310 7.859013 7.824425</td>
</tr>
<tr>
<td>6</td>
<td>3.974611 7.313082 8.189121</td>
</tr>
<tr>
<td>1</td>
<td>4.267558 6.518934 7.486302</td>
</tr>
<tr>
<td>1</td>
<td>3.968580 6.902513 9.205966</td>
</tr>
<tr>
<td>1</td>
<td>4.740365 8.100375 8.126745</td>
</tr>
<tr>
<td>6</td>
<td>2.937257 9.145641 4.619170</td>
</tr>
<tr>
<td>6</td>
<td>2.002817 11.504931 7.660603</td>
</tr>
<tr>
<td>1</td>
<td>2.974235 11.020118 7.710539</td>
</tr>
<tr>
<td>6</td>
<td>1.707263 12.777474 8.079456</td>
</tr>
<tr>
<td>1</td>
<td>2.369126 13.512080 8.526510</td>
</tr>
<tr>
<td>6</td>
<td>-0.196884 11.571976 7.135280</td>
</tr>
<tr>
<td>6</td>
<td>-1.390579 10.980180 6.604324</td>
</tr>
<tr>
<td>6</td>
<td>-2.719678 11.646373 6.524230</td>
</tr>
<tr>
<td>1</td>
<td>-3.060855 11.693668 5.479377</td>
</tr>
<tr>
<td>1</td>
<td>-2.675449 12.664332 6.929662</td>
</tr>
<tr>
<td>1</td>
<td>-3.471178 11.071367 7.085313</td>
</tr>
<tr>
<td>6</td>
<td>-1.805896 7.787519 5.318665</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>29</th>
<th>[Co(L\textsubscript{1})(N\textsubscript{3})\textsubscript{3}]−</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>0.779421 9.373172 6.622885</td>
</tr>
<tr>
<td>16</td>
<td>-2.974220 10.585490 4.789072</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1.935748</td>
</tr>
<tr>
<td>7</td>
<td>0.658983</td>
</tr>
<tr>
<td>7</td>
<td>-0.530811</td>
</tr>
<tr>
<td>7</td>
<td>-0.764719</td>
</tr>
<tr>
<td>7</td>
<td>-0.727185</td>
</tr>
<tr>
<td>7</td>
<td>0.668404</td>
</tr>
<tr>
<td>1</td>
<td>-0.151898</td>
</tr>
<tr>
<td>1</td>
<td>1.582769</td>
</tr>
<tr>
<td>7</td>
<td>0.849748</td>
</tr>
<tr>
<td>7</td>
<td>2.334426</td>
</tr>
<tr>
<td>7</td>
<td>-0.187493</td>
</tr>
<tr>
<td>6</td>
<td>-0.497788</td>
</tr>
<tr>
<td>1</td>
<td>0.460592</td>
</tr>
<tr>
<td>6</td>
<td>-1.737711</td>
</tr>
<tr>
<td>1</td>
<td>-1.991408</td>
</tr>
<tr>
<td>6</td>
<td>-1.770427</td>
</tr>
<tr>
<td>6</td>
<td>-1.933150</td>
</tr>
<tr>
<td>6</td>
<td>-3.239368</td>
</tr>
<tr>
<td>1</td>
<td>-3.383774</td>
</tr>
<tr>
<td>1</td>
<td>-4.073220</td>
</tr>
<tr>
<td>1</td>
<td>-3.267465</td>
</tr>
<tr>
<td>6</td>
<td>0.522168</td>
</tr>
<tr>
<td>7</td>
<td>1.928216</td>
</tr>
<tr>
<td>7</td>
<td>2.944945</td>
</tr>
<tr>
<td>7</td>
<td>3.080773</td>
</tr>
<tr>
<td>7</td>
<td>3.841582</td>
</tr>
<tr>
<td>7</td>
<td>0.221893</td>
</tr>
</tbody>
</table>

67

[Co(L^2)_2]^{3+}

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>0.000052</td>
<td>-0.000140</td>
<td>-0.164585</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>-1.388377</td>
<td>0.078672</td>
<td>-1.506015</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1.365820</td>
<td>0.409450</td>
<td>1.118862</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-0.182083</td>
<td>1.853745</td>
<td>-0.230113</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-1.198504</td>
<td>2.345208</td>
<td>-1.007177</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-4.139758</td>
<td>0.889089</td>
<td>-1.623933</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1.388629</td>
<td>-0.078965</td>
<td>-1.505795</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.182119</td>
<td>-1.854040</td>
<td>-0.230208</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1.198728</td>
<td>-2.345504</td>
<td>-1.007062</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-1.365892</td>
<td>-0.409731</td>
<td>1.118674</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2.144773</td>
<td>-0.453289</td>
<td>1.783655</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.918567</td>
<td>-1.511893</td>
<td>1.668674</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3.203572</td>
<td>-0.015060</td>
<td>2.581291</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3.815992</td>
<td>-0.749321</td>
<td>3.101817</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3.451782</td>
<td>1.351847</td>
<td>2.686935</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4.277826</td>
<td>1.719296</td>
<td>3.295188</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2.629351</td>
<td>2.250941</td>
<td>2.005001</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.796764</td>
<td>3.325001</td>
<td>2.068843</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.584883</td>
<td>1.761374</td>
<td>1.222044</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.655972</td>
<td>2.590128</td>
<td>0.453210</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.663961</td>
<td>4.075518</td>
<td>0.457987</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>1</td>
<td>1.602738</td>
<td>4.451652</td>
<td>0.022768</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.600685</td>
<td>4.456634</td>
<td>1.487701</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-0.178226</td>
<td>4.458956</td>
<td>-0.126618</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-1.771196</td>
<td>1.313546</td>
<td>-1.606519</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-3.047797</td>
<td>1.550576</td>
<td>-2.384932</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-3.267660</td>
<td>2.617801</td>
<td>-2.468764</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-2.993763</td>
<td>1.096807</td>
<td>-3.381110</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-4.857470</td>
<td>1.613073</td>
<td>-0.727866</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-4.660183</td>
<td>2.682287</td>
<td>-0.700822</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-5.771721</td>
<td>0.985968</td>
<td>0.100035</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-6.336574</td>
<td>1.584925</td>
<td>0.811461</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-5.939255</td>
<td>-0.398302</td>
<td>0.012055</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-6.645132</td>
<td>-0.908506</td>
<td>0.666690</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-5.196128</td>
<td>-1.121049</td>
<td>-0.923215</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-5.302670</td>
<td>-2.198906</td>
<td>-1.027021</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-4.296338</td>
<td>-0.454400</td>
<td>-1.737143</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-3.676143</td>
<td>-0.952264</td>
<td>-2.477642</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.771495</td>
<td>-1.313836</td>
<td>-1.606286</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3.048128</td>
<td>-1.550805</td>
<td>-2.384642</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4.139974</td>
<td>-0.888804</td>
<td>-1.623910</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3.268212</td>
<td>-2.618017</td>
<td>-2.468062</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.993988</td>
<td>-1.097443</td>
<td>-3.381003</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4.858190</td>
<td>-1.612439</td>
<td>-0.727964</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5.772238</td>
<td>-0.984877</td>
<td>0.099817</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5.939086</td>
<td>0.399472</td>
<td>0.011803</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5.195521</td>
<td>1.121843</td>
<td>-0.923399</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4.295901</td>
<td>0.454754</td>
<td>-1.737171</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4.661473</td>
<td>-2.681755</td>
<td>-0.700911</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6.337485</td>
<td>-1.583555</td>
<td>0.811165</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5.301560</td>
<td>2.199743</td>
<td>-1.027272</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3.675359</td>
<td>0.952316</td>
<td>-2.477581</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6.644803</td>
<td>0.910013</td>
<td>0.666346</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-1.585075</td>
<td>-1.761651</td>
<td>1.221687</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-0.656025</td>
<td>-2.590414</td>
<td>0.453000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-0.664000</td>
<td>-4.075806</td>
<td>0.457861</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-1.602692</td>
<td>-4.451984</td>
<td>0.022497</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-0.600897</td>
<td>-4.456841</td>
<td>1.487614</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.178289</td>
<td>-4.459273</td>
<td>-0.126578</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-2.629747</td>
<td>-2.251228</td>
<td>2.004354</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-3.452246</td>
<td>-1.352147</td>
<td>2.686230</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-3.203870</td>
<td>0.014747</td>
<td>2.580837</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-2.144886</td>
<td>0.452990</td>
<td>1.783448</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-2.797265</td>
<td>-3.325280</td>
<td>2.068042</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-4.278469</td>
<td>-1.719596</td>
<td>3.294240</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-3.816314</td>
<td>0.748992</td>
<td>3.101358</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-1.918588</td>
<td>1.511593</td>
<td>1.668641</td>
<td></td>
</tr>
</tbody>
</table>

43

$[\text{Co(L}_2^2\text{)(N}_3\text{)}]$
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>5.229580</td>
<td>3.532769</td>
<td>5.827523</td>
</tr>
<tr>
<td>7</td>
<td>3.009488</td>
<td>2.429180</td>
<td>5.489626</td>
</tr>
<tr>
<td>7</td>
<td>1.865210</td>
<td>1.872374</td>
<td>4.985133</td>
</tr>
<tr>
<td>7</td>
<td>0.542547</td>
<td>2.101968</td>
<td>1.701382</td>
</tr>
<tr>
<td>7</td>
<td>3.467075</td>
<td>4.795333</td>
<td>4.143559</td>
</tr>
<tr>
<td>7</td>
<td>2.297593</td>
<td>4.879927</td>
<td>3.860471</td>
</tr>
<tr>
<td>7</td>
<td>1.171576</td>
<td>5.025941</td>
<td>3.588860</td>
</tr>
<tr>
<td>7</td>
<td>5.649060</td>
<td>3.536463</td>
<td>2.955605</td>
</tr>
<tr>
<td>7</td>
<td>5.267380</td>
<td>4.057121</td>
<td>1.936204</td>
</tr>
<tr>
<td>7</td>
<td>4.958382</td>
<td>4.570244</td>
<td>0.933878</td>
</tr>
<tr>
<td>7</td>
<td>5.145780</td>
<td>1.202248</td>
<td>2.363791</td>
</tr>
<tr>
<td>6</td>
<td>6.426274</td>
<td>4.125746</td>
<td>5.882462</td>
</tr>
<tr>
<td>1</td>
<td>6.902925</td>
<td>4.309477</td>
<td>4.919032</td>
</tr>
<tr>
<td>6</td>
<td>7.010880</td>
<td>4.479081</td>
<td>7.101429</td>
</tr>
<tr>
<td>1</td>
<td>7.987369</td>
<td>4.961658</td>
<td>7.107840</td>
</tr>
<tr>
<td>6</td>
<td>6.326299</td>
<td>4.203417</td>
<td>8.285424</td>
</tr>
<tr>
<td>1</td>
<td>6.758717</td>
<td>4.469117</td>
<td>9.250330</td>
</tr>
<tr>
<td>6</td>
<td>5.077364</td>
<td>3.581933</td>
<td>8.225230</td>
</tr>
<tr>
<td>1</td>
<td>4.519177</td>
<td>3.354442</td>
<td>9.132585</td>
</tr>
<tr>
<td>6</td>
<td>4.540025</td>
<td>3.250839</td>
<td>6.979129</td>
</tr>
<tr>
<td>6</td>
<td>3.247220</td>
<td>2.605703</td>
<td>6.764847</td>
</tr>
<tr>
<td>6</td>
<td>2.323745</td>
<td>2.208014</td>
<td>7.863389</td>
</tr>
<tr>
<td>1</td>
<td>2.050201</td>
<td>3.082140</td>
<td>8.473843</td>
</tr>
<tr>
<td>1</td>
<td>2.808214</td>
<td>1.478993</td>
<td>8.531130</td>
</tr>
<tr>
<td>1</td>
<td>1.414108</td>
<td>1.762211</td>
<td>7.447837</td>
</tr>
<tr>
<td>6</td>
<td>1.983732</td>
<td>1.850296</td>
<td>3.662996</td>
</tr>
<tr>
<td>6</td>
<td>0.831924</td>
<td>1.254286</td>
<td>2.877580</td>
</tr>
<tr>
<td>1</td>
<td>1.099344</td>
<td>0.251606</td>
<td>2.518892</td>
</tr>
<tr>
<td>1</td>
<td>-0.065282</td>
<td>1.184538</td>
<td>3.498435</td>
</tr>
<tr>
<td>6</td>
<td>1.335388</td>
<td>1.997441</td>
<td>0.605204</td>
</tr>
<tr>
<td>1</td>
<td>2.099551</td>
<td>1.225385</td>
<td>0.634878</td>
</tr>
<tr>
<td>6</td>
<td>1.148018</td>
<td>2.845115</td>
<td>-0.472817</td>
</tr>
<tr>
<td>1</td>
<td>1.792530</td>
<td>2.742135</td>
<td>-1.343515</td>
</tr>
<tr>
<td>6</td>
<td>0.137218</td>
<td>3.807945</td>
<td>-0.418994</td>
</tr>
<tr>
<td>1</td>
<td>-0.026170</td>
<td>4.481007</td>
<td>-1.260319</td>
</tr>
<tr>
<td>6</td>
<td>-0.662064</td>
<td>3.899731</td>
<td>0.721480</td>
</tr>
<tr>
<td>1</td>
<td>-1.457195</td>
<td>4.637941</td>
<td>0.804155</td>
</tr>
<tr>
<td>6</td>
<td>-0.432931</td>
<td>3.039099</td>
<td>1.781426</td>
</tr>
<tr>
<td>1</td>
<td>-1.004259</td>
<td>3.064264</td>
<td>2.705822</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19</th>
<th>L⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>1.455267</td>
</tr>
<tr>
<td>16</td>
<td>1.613013</td>
</tr>
<tr>
<td>7</td>
<td>0.048292</td>
</tr>
<tr>
<td>7</td>
<td>2.187598</td>
</tr>
<tr>
<td>7</td>
<td>3.257513</td>
</tr>
<tr>
<td>7</td>
<td>4.144786</td>
</tr>
<tr>
<td>1</td>
<td>5.033995</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>---</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>4.158640</td>
</tr>
<tr>
<td>6</td>
<td>-0.763184</td>
</tr>
<tr>
<td>1</td>
<td>-1.799880</td>
</tr>
<tr>
<td>6</td>
<td>-0.192934</td>
</tr>
<tr>
<td>1</td>
<td>-0.642569</td>
</tr>
<tr>
<td>6</td>
<td>1.272616</td>
</tr>
<tr>
<td>6</td>
<td>2.398840</td>
</tr>
<tr>
<td>6</td>
<td>3.729007</td>
</tr>
<tr>
<td>1</td>
<td>4.048003</td>
</tr>
<tr>
<td>1</td>
<td>3.702620</td>
</tr>
<tr>
<td>1</td>
<td>4.507643</td>
</tr>
<tr>
<td>6</td>
<td>3.039612</td>
</tr>
</tbody>
</table>

33

$$L^2$$

	2.815679	3.058801	2.464160
7	5.913406	3.428634	6.039915
7	3.376577	2.908015	5.134622
7	2.106351	2.633208	4.693008
7	0.109914	3.146685	1.803645
6	7.136098	3.699313	6.508876
1	7.892186	3.948770	5.756135
6	7.484048	3.678872	7.865004
1	8.501967	3.909148	8.181338
6	6.484754	3.354475	8.783285
1	6.697574	3.323182	9.853512
6	5.203324	3.069275	8.315003
1	4.413767	2.816206	9.021056
6	4.935485	3.112390	6.928927
6	3.575608	2.811599	6.422736
6	2.509561	2.416921	7.415023
1	2.314291	3.225811	8.137478
2	2.812327	1.532352	7.997361
1	1.582259	2.191842	6.878206
6	1.997844	2.730992	3.354929
6	0.571882	2.296001	2.908969
1	0.609076	1.259862	2.545399
1	-0.140933	2.366893	3.734527
6	0.701379	3.006643	0.590572
1	1.409992	2.187773	0.496491
6	0.373234	3.863778	-0.450817
1	0.850036	3.723707	-1.419291
6	-0.559729	4.877300	-0.237371
1	-0.832293	5.555807	-1.045513
6	-1.148634	5.009813	1.024936
1	-1.882727	5.786013	1.232894
6	-0.791977	4.134135	2.034252
1	-1.202215	4.182274	3.040621

3

$$N_3$$
\[
[\text{Co}(\text{L}^{16\text{S}→\text{O}})_2]^+ \\
\begin{array}{cccc}
27 & 0.604617 & 9.103971 & 6.470470 \\
16 & 1.200701 & 7.176073 & 10.273564 \\
8 & 1.339151 & 9.606642 & 4.752383 \\
16 & 0.140287 & 13.188636 & 7.749370 \\
8 & -0.195187 & 7.533332 & 5.672069 \\
7 & 0.312128 & 8.408021 & 8.226012 \\
7 & 3.278567 & 9.441022 & 3.576377 \\
7 & 4.228551 & 9.099527 & 3.490572 \\
7 & 2.841696 & 9.912694 & 2.793599 \\
7 & 0.960738 & 10.841706 & 7.173045 \\
7 & -1.117009 & 9.799997 & 6.187778 \\
7 & -2.030633 & 9.000730 & 5.628015 \\
7 & -2.187120 & 6.839222 & 4.822246 \\
1 & -3.146189 & 7.032526 & 4.590504 \\
1 & -1.773661 & 5.940588 & 4.590991 \\
6 & -0.730691 & 8.386635 & 9.108038 \\
1 & -1.680382 & 8.842743 & 8.841677 \\
6 & -0.431082 & 7.752895 & 10.285056 \\
1 & -1.069022 & 7.591648 & 11.147687 \\
6 & 1.424530 & 7.804908 & 8.687589 \\
6 & 2.587079 & 7.774064 & 7.841650 \\
6 & 3.900363 & 7.152579 & 8.168855 \\
1 & 4.113001 & 6.317727 & 7.483743 \\
1 & 3.913055 & 6.773276 & 9.197754 \\
1 & 4.710372 & 7.887465 & 8.051608 \\
6 & 2.569320 & 9.193618 & 4.690495 \\
6 & 2.040885 & 11.473566 & 7.726093 \\
1 & 2.986274 & 10.947437 & 7.827455 \\
6 & 1.781472 & 12.765642 & 8.100289 \\
1 & 2.453575 & 13.485900 & 8.664829 \\
6 & -0.141223 & 11.615752 & 7.110896 \\
6 & -1.340164 & 11.050766 & 6.552857 \\
6 & -2.649217 & 11.742258 & 6.390865 \\
1 & -2.908159 & 11.832235 & 5.324841 \\
1 & -2.623295 & 12.746366 & 6.831041 \\
1 & -3.449433 & 11.163247 & 6.874954 \\
6 & -1.434378 & 7.798780 & 5.386271 \\
\end{array}
\]

\[
[\text{Co}(\text{L}^{16\text{S}→\text{O}})(\text{N}_3)_3]^− \\
\begin{array}{cccc}
27 & 0.700267 & 9.320353 & 6.693903 \\
16 & -2.927694 & 10.618882 & 4.757248 \\
8 & 1.537339 & 8.469283 & 8.234853 \\
\end{array}
\]
<table>
<thead>
<tr>
<th></th>
<th>0.565592</th>
<th>7.582004</th>
<th>5.754486</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>-0.521915</td>
<td>10.067692</td>
<td>5.427567</td>
</tr>
<tr>
<td>7</td>
<td>-0.847463</td>
<td>8.988802</td>
<td>7.682195</td>
</tr>
<tr>
<td>7</td>
<td>-0.718730</td>
<td>8.405813</td>
<td>8.880680</td>
</tr>
<tr>
<td>7</td>
<td>0.959176</td>
<td>7.630771</td>
<td>10.273789</td>
</tr>
<tr>
<td>1</td>
<td>0.235434</td>
<td>7.254064</td>
<td>10.875296</td>
</tr>
<tr>
<td>1</td>
<td>1.910196</td>
<td>7.302361</td>
<td>10.395915</td>
</tr>
<tr>
<td>7</td>
<td>0.831159</td>
<td>11.098902</td>
<td>7.578895</td>
</tr>
<tr>
<td>7</td>
<td>2.342501</td>
<td>9.733438</td>
<td>5.679141</td>
</tr>
<tr>
<td>7</td>
<td>0.138542</td>
<td>5.580006</td>
<td>6.954281</td>
</tr>
<tr>
<td>6</td>
<td>-0.428689</td>
<td>10.659257</td>
<td>4.200336</td>
</tr>
<tr>
<td>1</td>
<td>0.550259</td>
<td>10.790569</td>
<td>3.746217</td>
</tr>
<tr>
<td>6</td>
<td>-1.639116</td>
<td>11.029658</td>
<td>3.672960</td>
</tr>
<tr>
<td>1</td>
<td>-1.847151</td>
<td>11.513636</td>
<td>2.724395</td>
</tr>
<tr>
<td>6</td>
<td>-1.786278</td>
<td>9.965752</td>
<td>5.875853</td>
</tr>
<tr>
<td>6</td>
<td>-2.004201</td>
<td>9.356823</td>
<td>7.159227</td>
</tr>
<tr>
<td>6</td>
<td>-3.320696</td>
<td>9.167741</td>
<td>8.067675</td>
</tr>
<tr>
<td>1</td>
<td>-4.142835</td>
<td>9.516245</td>
<td>7.196212</td>
</tr>
<tr>
<td>1</td>
<td>-3.354068</td>
<td>9.720771</td>
<td>8.783558</td>
</tr>
<tr>
<td>6</td>
<td>0.609171</td>
<td>8.176533</td>
<td>9.086982</td>
</tr>
<tr>
<td>7</td>
<td>1.899337</td>
<td>11.364845</td>
<td>8.072217</td>
</tr>
<tr>
<td>7</td>
<td>2.907543</td>
<td>11.679650</td>
<td>8.567633</td>
</tr>
<tr>
<td>7</td>
<td>3.161248</td>
<td>8.864502</td>
<td>5.514666</td>
</tr>
<tr>
<td>7</td>
<td>3.990901</td>
<td>8.066183</td>
<td>5.320417</td>
</tr>
<tr>
<td>7</td>
<td>0.346275</td>
<td>6.583336</td>
<td>6.394853</td>
</tr>
</tbody>
</table>

67

$[\text{Co(L}^{2+\text{O} \rightarrow \text{S})_2]^{3+}]$

<table>
<thead>
<tr>
<th></th>
<th>-0.000005</th>
<th>0.000014</th>
<th>-0.256629</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>1.487259</td>
<td>0.559449</td>
<td>-1.831016</td>
</tr>
<tr>
<td>16</td>
<td>-1.148523</td>
<td>-0.836436</td>
<td>1.078064</td>
</tr>
<tr>
<td>7</td>
<td>0.838885</td>
<td>-1.694688</td>
<td>-0.239043</td>
</tr>
<tr>
<td>7</td>
<td>1.970463</td>
<td>-1.951911</td>
<td>-0.963978</td>
</tr>
<tr>
<td>7</td>
<td>4.708599</td>
<td>-0.555787</td>
<td>-1.434626</td>
</tr>
<tr>
<td>16</td>
<td>-1.487290</td>
<td>-0.559518</td>
<td>-1.830954</td>
</tr>
<tr>
<td>7</td>
<td>-0.838908</td>
<td>1.694710</td>
<td>-0.239124</td>
</tr>
<tr>
<td>7</td>
<td>-1.970501</td>
<td>1.951887</td>
<td>-0.964049</td>
</tr>
<tr>
<td>7</td>
<td>1.148525</td>
<td>0.836547</td>
<td>1.077996</td>
</tr>
<tr>
<td>6</td>
<td>-2.193538</td>
<td>-0.289376</td>
<td>1.710678</td>
</tr>
<tr>
<td>1</td>
<td>-2.396544</td>
<td>0.761173</td>
<td>1.511453</td>
</tr>
<tr>
<td>6</td>
<td>-2.992212</td>
<td>-1.029888</td>
<td>2.583865</td>
</tr>
<tr>
<td>1</td>
<td>-3.836427</td>
<td>-0.546007</td>
<td>3.072248</td>
</tr>
<tr>
<td>6</td>
<td>-2.688351</td>
<td>-2.371745</td>
<td>2.806769</td>
</tr>
<tr>
<td>1</td>
<td>-3.297336</td>
<td>-2.974452</td>
<td>3.480060</td>
</tr>
<tr>
<td>6</td>
<td>-1.590239</td>
<td>-2.938300</td>
<td>2.157597</td>
</tr>
<tr>
<td>1</td>
<td>-1.324081</td>
<td>-3.982678</td>
<td>2.312361</td>
</tr>
<tr>
<td>6</td>
<td>-0.830906</td>
<td>-2.150329</td>
<td>1.290536</td>
</tr>
<tr>
<td>6</td>
<td>0.331932</td>
<td>-2.620705</td>
<td>0.548486</td>
</tr>
<tr>
<td>6</td>
<td>0.880987</td>
<td>-3.994844</td>
<td>0.685203</td>
</tr>
<tr>
<td>1</td>
<td>0.137270</td>
<td>-4.732878</td>
<td>0.346416</td>
</tr>
<tr>
<td></td>
<td>1.103414</td>
<td>4.213607</td>
<td>1.740184</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>1.790919</td>
<td>-4.103344</td>
<td>0.088643</td>
</tr>
<tr>
<td></td>
<td>2.332727</td>
<td>-0.294061</td>
<td>-1.701325</td>
</tr>
<tr>
<td></td>
<td>3.676287</td>
<td>-1.049491</td>
<td>-2.387434</td>
</tr>
<tr>
<td></td>
<td>3.899816</td>
<td>-2.094212</td>
<td>-2.625977</td>
</tr>
<tr>
<td></td>
<td>3.728769</td>
<td>-0.442694</td>
<td>-3.296113</td>
</tr>
<tr>
<td></td>
<td>5.253884</td>
<td>-1.424043</td>
<td>-0.546569</td>
</tr>
<tr>
<td></td>
<td>4.968142</td>
<td>-2.467809</td>
<td>-0.653911</td>
</tr>
<tr>
<td></td>
<td>6.109488</td>
<td>-0.964546</td>
<td>0.439493</td>
</tr>
<tr>
<td></td>
<td>6.537386</td>
<td>-1.677873</td>
<td>1.141094</td>
</tr>
<tr>
<td></td>
<td>6.399747</td>
<td>0.399988</td>
<td>0.513486</td>
</tr>
<tr>
<td></td>
<td>7.065136</td>
<td>0.778854</td>
<td>1.288711</td>
</tr>
<tr>
<td></td>
<td>5.830829</td>
<td>1.273883</td>
<td>-0.415305</td>
</tr>
<tr>
<td></td>
<td>6.036556</td>
<td>2.342191</td>
<td>-0.394849</td>
</tr>
<tr>
<td></td>
<td>4.979940</td>
<td>0.772283</td>
<td>-1.385347</td>
</tr>
<tr>
<td></td>
<td>4.492864</td>
<td>1.394317</td>
<td>-2.132802</td>
</tr>
<tr>
<td></td>
<td>-2.332766</td>
<td>0.929337</td>
<td>-1.701331</td>
</tr>
<tr>
<td></td>
<td>-3.676354</td>
<td>1.049364</td>
<td>-2.387389</td>
</tr>
<tr>
<td></td>
<td>-4.708608</td>
<td>0.555656</td>
<td>-1.434516</td>
</tr>
<tr>
<td></td>
<td>-3.899924</td>
<td>2.094073</td>
<td>-2.625945</td>
</tr>
<tr>
<td></td>
<td>-3.728857</td>
<td>0.442546</td>
<td>-3.296552</td>
</tr>
<tr>
<td></td>
<td>-5.253863</td>
<td>1.423917</td>
<td>-0.546447</td>
</tr>
<tr>
<td></td>
<td>-6.109412</td>
<td>0.964424</td>
<td>0.439666</td>
</tr>
<tr>
<td></td>
<td>-6.399630</td>
<td>-0.400115</td>
<td>0.513708</td>
</tr>
<tr>
<td></td>
<td>-5.830732</td>
<td>-1.274018</td>
<td>-0.415089</td>
</tr>
<tr>
<td></td>
<td>-4.979908</td>
<td>-0.772420</td>
<td>-1.385189</td>
</tr>
<tr>
<td></td>
<td>-4.968162</td>
<td>2.467690</td>
<td>-0.653838</td>
</tr>
<tr>
<td></td>
<td>-6.537298</td>
<td>1.677759</td>
<td>1.141267</td>
</tr>
<tr>
<td></td>
<td>-6.036430</td>
<td>-2.342331</td>
<td>-0.394597</td>
</tr>
<tr>
<td></td>
<td>-4.492857</td>
<td>-1.394458</td>
<td>-2.132656</td>
</tr>
<tr>
<td></td>
<td>-7.064965</td>
<td>-0.778978</td>
<td>1.288979</td>
</tr>
<tr>
<td></td>
<td>0.830886</td>
<td>2.150442</td>
<td>1.290420</td>
</tr>
<tr>
<td></td>
<td>-0.331972</td>
<td>2.620765</td>
<td>0.548369</td>
</tr>
<tr>
<td></td>
<td>-0.881062</td>
<td>3.994893</td>
<td>0.685045</td>
</tr>
<tr>
<td></td>
<td>-0.137360</td>
<td>4.732938</td>
<td>0.346251</td>
</tr>
<tr>
<td></td>
<td>-1.103509</td>
<td>4.213675</td>
<td>1.740018</td>
</tr>
<tr>
<td></td>
<td>-1.791010</td>
<td>4.103345</td>
<td>0.088472</td>
</tr>
<tr>
<td></td>
<td>1.590226</td>
<td>2.938465</td>
<td>2.157427</td>
</tr>
<tr>
<td></td>
<td>2.688369</td>
<td>2.371961</td>
<td>2.806592</td>
</tr>
<tr>
<td></td>
<td>2.992256</td>
<td>1.030103</td>
<td>2.583732</td>
</tr>
<tr>
<td></td>
<td>2.193570</td>
<td>0.289535</td>
<td>1.710602</td>
</tr>
<tr>
<td></td>
<td>1.324051</td>
<td>3.982845</td>
<td>2.312154</td>
</tr>
<tr>
<td></td>
<td>3.297359</td>
<td>2.974710</td>
<td>3.479841</td>
</tr>
<tr>
<td></td>
<td>3.836499</td>
<td>0.546263</td>
<td>3.072108</td>
</tr>
<tr>
<td></td>
<td>2.396592</td>
<td>-0.761017</td>
<td>1.511415</td>
</tr>
</tbody>
</table>

43

$[\text{Co}(L^{2\alpha-S})(N_5)_3]$

<table>
<thead>
<tr>
<th></th>
<th>4.499091</th>
<th>3.131708</th>
<th>4.219438</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>3.262239</td>
<td>2.474583</td>
<td>2.485564</td>
</tr>
<tr>
<td>16</td>
<td>5.310024</td>
<td>3.568575</td>
<td>5.934709</td>
</tr>
<tr>
<td>L(1s→O) - 16</td>
<td>1.450489</td>
<td>7.234769</td>
<td>10.170263</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>8</td>
<td>1.953302</td>
<td>9.711683</td>
<td>4.044640</td>
</tr>
<tr>
<td>7</td>
<td>0.056951</td>
<td>8.417401</td>
<td>8.329548</td>
</tr>
<tr>
<td>7</td>
<td>2.221096</td>
<td>8.535630</td>
<td>6.463285</td>
</tr>
<tr>
<td>7</td>
<td>3.285337</td>
<td>8.548179</td>
<td>5.645458</td>
</tr>
<tr>
<td>7</td>
<td>4.106099</td>
<td>9.073059</td>
<td>3.573703</td>
</tr>
<tr>
<td>7</td>
<td>4.999849</td>
<td>8.884048</td>
<td>4.021079</td>
</tr>
<tr>
<td>1</td>
<td>4.130784</td>
<td>9.767560</td>
<td>2.832452</td>
</tr>
<tr>
<td>L^{2(0→S)}</td>
<td>16</td>
<td>3.513764</td>
<td>3.413695</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>5.894525</td>
<td>2.116288</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>3.739461</td>
<td>2.079828</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2.607134</td>
<td>1.813342</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.421183</td>
<td>2.806263</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>7.007725</td>
<td>2.298477</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>7.813753</td>
<td>1.577930</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>7.176995</td>
<td>3.326859</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>8.109876</td>
<td>3.420231</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6.118507</td>
<td>4.214661</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>6.199597</td>
<td>5.035401</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>4.949092</td>
<td>4.037981</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4.112813</td>
<td>4.724719</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>4.866848</td>
<td>2.978755</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3.637633</td>
<td>2.792521</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2.358176</td>
<td>3.458805</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2.329194</td>
<td>4.511895</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2.242984</td>
<td>3.443829</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1.507138</td>
<td>2.947583</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2.509535</td>
<td>2.277883</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.301606</td>
<td>1.710437</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1.619817</td>
<td>1.154907</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.722240</td>
<td>1.054369</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.716315</td>
<td>3.431277</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1.501618</td>
<td>2.981146</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.001390</td>
<td>4.559115</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.239939</td>
<td>5.034610</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>-0.999882</td>
<td>5.053283</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>-1.570950</td>
<td>5.935499</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>-1.271292</td>
<td>4.402306</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>-2.045025</td>
<td>4.757950</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>-0.538834</td>
<td>3.281201</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>-0.680726</td>
<td>2.732405</td>
</tr>
</tbody>
</table>