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Energy-momentum dispersion relation of plasmarons in graphene
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The many-body correction to the band structure of a quasi-free-standing graphene layer is obtained within
the Overhauser approach, where the electron-plasmon interaction is described as a field theoretical problem. We
find that the Dirac-like spectrum is shifted by �E(k = 0), which is on the order of 50–150 meV, depending
on the electron concentration ne, and is in semiquantitative agreement with experimental data. The value of the
Fermi velocity is renormalized by several percents and decreases with increasing electron concentration as found
experimentally.
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I. INTRODUCTION

There has been growing interest in plasmarons1–4 in doped
graphene, both from experimental and theoretical research
groups. Angle-resolved photoemission spectroscopy (ARPES)
has been employed4 to probe the band structure of high
quality quasi-free-standing and doped graphene. In that study
it was found that the well known linear Dirac-like spectrum
does not provide a sufficiently detailed picture of the charge
carrying excitations. Composite “plasmaron” particles, which
are bound states of charge carriers with plasmons, are
observed. Furthermore, instead of a single Dirac point three
crossing points were detected:4 the first between pure charge
bands, the second between pure plasmaron bands, and the
third one between charge and plasmaron bands. It is well
known that in the long wavelength limit the plasmon frequency
in graphene is proportional to the square root of the wave
vector,5–8 and a plasmaronic quasiparticle is formed when the
plasmons and charge carriers have the same group velocity.9

The reason why this more complicated picture of the band
structure has not been observed earlier is due to the low
quality and low mobility of old samples of graphene. The
spectral function A(k,ω) [which is related to the complex self-
energy �(k,ω)] has been used to analyze these experimental
data. Since the self-energy �(k,ω) depends on the dielectric
function ε(k,ω) the plasmons are naturally incorporated in this
treatment.

In this paper, we use a very different approach that is based
on second order perturbation theory of the electron-plasmon
interaction that is treated as a theoretical field problem. Our
model is able to determine the correction to the Dirac band
structure as due to the interaction of charge carriers with
plasmons. For the interaction between plasmons and charge
carriers we generalize the Overhauser approach9,10 to the
two-dimensional electron gas (2DEG) in graphene. The fact
that the plasmon excitation ωq of the Dirac sea remains
well defined even when it enters the interband particle-hole
continuum3 gives credibility to the method used. This is
especially important when the momentum q in the integration
is large. The value of the shift at k = 0, �E(0), is in
semiquantitative agreement with recent experimental data.4

We organize the paper as follows. In Sec. II we present
the theoretical model and derive relevant expressions for the
interaction and the coupling between electrons and plasmons

in graphene. In the subsequent section, Sec. III, the numerical
calculations of the energy correction due to the interaction with
plasmons are presented for various doping levels, i.e., charge
carrier density. The influence of the electron concentration is
analyzed and discussed. Finally, we summarize our results and
present the conclusions in Sec. IV, where also a comparison
is made with recent experiments.

II. THEORETICAL MODEL

The massless (noninteracting) Dirac band Hamiltonian of
graphene is given by

H = h̄vF σ · k, (1)

where vF is the Fermi velocity, and σ = (σx,σy) are the
two-dimensional (2D) Pauli matrices. Plasmons in a sin-
gle layer graphene have been investigated theoretically.5–7

Their dispersion are determined by zeros of the dielectric
function, and in the long wavelength limit it is given by
ωq = √

α(gsgvπns)1/4vF

√
q, where gs = 2 and gv = 2 are

the degeneracy factors for spin and valley degrees of freedom,
respectively. The excitations will be described by a scalar field
previously described by Overhauser9 for the three-dimensional
(3D) electron gas. The changes in the electron spectrum are
calculated analogously as for a polaron problem where a test
electron interacts with the plasmon field. The interaction of a
remote electron (i.e., an electron displaced from the graphene
layer) with plasmons was treated in our earlier work,10 and the
interaction term of the Hamiltonian is given by

Hint =
∑

q

Vq√
	

exp(iq · r)(aq + a
†
−q), (2)

where the electron-plasmon (interaction) matrix element Vq
is10

Vq = 2πe2

κ

√
n′

sgv

h̄ω′
q

W

8π
. (3)

Here n′
s is the concentration per unit cell n′

s = ne3
√

3/2a2
C-C,

where aC-C = 1.42 Å is the carbon-carbon distance. Further,
W is the bandwidth of the conduction band, and determines the
momentum cutoff. Within the tight-binding picture the value of

W is
√√

3πt , where t is the hopping energy11 t = 2.8 eV. The
same value of the energy cutoff was used by LeBlanc et al.1
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while calculating the density of states. We emphasize at this
point that ω′

q is not the bare plasmon frequency but is modified
by the polarization of the electron gas and is given by10

ω′2
q = ω2

q
ε(q)

ε(q) − 1
. (4)

It can be shown that in the long wavelength limit (q → 0) and
within the random phase approximation (RPA) the (static)
dielectric function can be approximated by6

ε(q) = 1 + qs

q
, (5)

where qs is the screening wave vector, qs = gsgve
2kF /(κh̄vF ).

The previous relation is obtained from the general relation
ε(q,ω) = 1 + vc(q)�(q,ω), where vc(q) = 2πe2/(κq) is the
Fourier transform of the 2D Coulomb interaction, and �(q,ω)
is the 2D polarizability.

Now, one may readily evaluate the correction in the energy
band due to the interaction between the electrons and the
plasmons. This will be done by employing second order
perturbation theory, and for the case of graphene it reads

�E0(k) = −P
1

	

∑
q

|Vq|2
h̄ωq + h̄vF |k − q| − h̄vF |k| , (6)

where P (·) stands for the principal value. However, this cor-
rection is done within nondegenerate Rayleigh-Schrödinger
perturbation theory (RSPT). Because of degeneracy, the im-
proved Wigner-Brillouin perturbation theory (IWBPT) needs
to be used.12 The main idea is to ensure improved convergence
when the denominator in Eq. (6) is close to zero, which is
realized by adding the term � = �E(k) − �E0(k) [�E0(k)
is evaluated within RSPT],

�E(k) = −P
∑

q

|Vq|2
h̄ωq+h̄vF |k − q| − h̄vF |k| − �(k)

.

(7)

It is obvious that Eq. (7) should be solved self-consistently
since �E appears on both sides of the equation. In the next
section the relation for �E(k) will be calculated for concrete
values of the doping level, permittivity, and other parameters
of the material.

At this point, we address the influence of the broad-
ening of plasmon excitation, �(q) when it enters the in-
terband particle-hole continuum. It is defined as �(q) =
�(q,ω = ωplq), where13

�(q,ω) = Im[�(q,ω)]

∂ Re[�(q,ω)]/∂ω
. (8)

For graphene the polarizability function can be approximated
as D0(h̄vF q)2/(2ω2)[1 − ω2/(4E2

F )] for ω > vF q, where D0

is the density of states. This form suggests that the imaginary
part is zero, so that the broadening can be neglected. This
contrasts the case of a 2DEG with a parabolic energy spec-
trum, where the polarizability function, given as �(q,ω) =
q2/(4

√
v2

F q2 − ω2), can easily assume a large imaginary

part11 when ω > vF q. As pointed out in Ref. 3, the plasmon
excitation of the Dirac sea remains remarkably well defined
even when it enters the interband particle-hole continuum.

This is due to the fact that transitions near the bottom of the
interband particle-hole continuum have nearly parallel k and
k + q and therefore little charge-fluctuation weight is attached
to it. In reality, the damping can be important for very large
momentum q, but then the contribution to the energy shift, i.e.,
to the integral in Eq. (7), is small.

III. NUMERICAL RESULTS

The numerical calculations are carried out for a doped
graphene layer, with electron concentration in the range n ∈
(1,10) × 1013 cm−2, corresponding to the Fermi level EF ∈
(0.37,1.2) eV. While evaluating Eq. (7), it is important to bear
in mind that the momentum q has a cutoff value determined
by the bandwidth W . This was also done when evaluating10

the interaction strength Vq. Unlike the case of polarons in
conventional semiconductors, here it is not straightforward to
derive any approximate relation for small k, since plasmons
have a complicated dispersion relation, and the interaction
matrix element Vq depends on q in a nontrivial manner. Thus
we will treat Eq. (6) numerically. Due to conical band structure
�E(k) = �E(k), and one may write for small k

�E(k) = �E(0) + αk + βk2. (9)

In Fig. 1 we show the result for the energy correction
�E(k) versus the momentum k for two electron concentrations
ne = 1013 cm−2 and ne = 3 × 1013 cm−2 (solid curves). On
the same graph, the energy correction �E0(k) calculated
within RSPT is also given by dashed and dashed-dotted curves.
The absolute value of �E(k) increases with the electron
concentration. Note that the value of �E is not directly related
to δE = E2 − E0 as considered in Refs. 1, 2, and 4, but it is
on the order of δE/2. The energies E2 and E0 correspond to
the Dirac crossing of the bands of opposite chirality. The shift
�E is −23 and −60 meV for electron concentrations ne =
1013 cm−2 and ne = 3 × 1013 cm−2, respectively. Further, the
values of the parameters α and β are α = −0.005(h̄vF ),
β = −7.4 × 103(h̄vF )2 (eV−1) for ne = 1013 cm−2 and α =
−0.013(h̄vF ), and β = −7.6 × 103(h̄vF )2 (eV−1) for ne =
3 × 1013 cm−2. These parameters are obtained by fitting
Eq. (9) to our numerical values (see Fig. 1) in the range
0 < k < 0.6 nm−1.

FIG. 1. The correction to the energy �E(k) vs electron mo-
mentum k for two values of the doping level ne = 1013 cm−2 and
3 × 1013 cm−2 (solid curves). Dashed and dashed-dotted curves
correspond to the correction �E0(k) within RSPT.
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FIG. 2. The correction to the energy �E(0) for k = 0 vs the
electron concentration ne.

In Fig. 2 we present the result for the energy correction
�E(0) at k = 0 versus doping of graphene, i.e., the electron
concentration ne. As can be seen, the absolute value of
�E(0) increases with the electron concentration. This is
mainly the consequence of the dependence of the matrix
element Vq on ne [see Eq. (3)]. The obtained dependence
of the energy shift on the concentration could be fitted
to �E(0) = c1ne + c2n

2
e , where c1 = −2.14 × 10−15 cm2 eV

and c2 = 5.39 × 10−30 cm4 eV.
In Fig. 3 we show how the fitting parameter α in Eq. (9)

changes with the electron concentration ne. The absolute value
of α increases with the concentration, since the matrix element
Vq depends on ne as

√
ne [see Eq. (3)]. The negative value of α

implies a lower effective value of the Fermi velocity, and thus
the electron velocity decreases with doping. Our numerical re-
sults could be fitted to the expression α/(h̄vF ) = d1ne + d2n

2
e ,

where d1 = −3.8 × 10−16 cm−2 and d2 = 1.2 × 10−30 cm−4.
The quadratic term in �E(k) is shown in Fig. 4 as function of
the electron concentration.

IV. CONCLUSION AND COMPARISON
WITH EXPERIMENT

In this paper we analyzed the interaction between an
electron and the collective excitation of the electron gas, i.e.,
plasmons in graphene, by using a field-theoretical approach.
This interaction is modeled by generalizing the Overhauser
approach9 to the 2DEG in graphene. We evaluated the

FIG. 3. The fitting parameter α vs the electron concentration ne.

FIG. 4. The fitting parameter β vs the electron concentration ne.

energy correction as a result of this interaction. Second order
perturbation theory was employed to determine the energy of
the plasmaron, which is a composite quasiparticle, i.e., a bound
state of an electron with plasmons.

The motivations for this study are very recent experimental
findings2,4 that show that the existence of plasmarons and
its band cannot be neglected, at least not in clean samples
of quasi-free-standing doped graphene. These experimental
studies showed that neither defect scattering nor the symmetry
breaking potential induced by the substrate are responsible
for the deviations from the accepted conical band structure
with one crossing point at ED = 0. The numerical results
for �E(0) obtained in this paper are of the same order as
the corresponding experimental value4 for n-doped graphene,
where the bands are shifted by a value of about 0.25 eV for
electron density ne = 1.7 × 1013 cm−2. Better agreement is
achieved when we take a larger value for the cutoff energy W .
Note, however, that the exact value of the energy cutoff is not
known, but is usually estimated from the tight-binding model.
Furthermore, it was shown that for small and finite k, �E(k)
can be approximated by a linear function αk, which in turn
renormalizes the value of the Fermi velocity vF → (1 + α)vF

[α = −1% to 3% for ne ∈ (1,10) × 1013 cm−2] for the plas-
maronic band. There are already a few theoretical works14,15

devoted to many-body corrections to the Fermi velocity, and
its dependence on the doping level. In Ref. 15 it was estimated
that vF may decrease up to 8% for ne = 4 × 1013 cm−2. In
addition, there are indirect experimental data that suggest a
small but noticeable modulation of the Fermi velocity with
doping.16 Quite recently, the change of the velocity with
electron concentration is observed in suspended graphene,17

through cyclotron resonance measurements. Here, we found
that the absolute value of α increases with the bandwidth W ,
while the coefficient β decreases with W , which means that the
energy band dispersion is more linear for larger values of the
momentum cutoff. On the other hand, the value of �E(0) is
in even better agreement with ab initio studies of graphene.18

The authors of Ref. 18 performed a first-principles calculation
in order to simulate the angle-resolved photoemission spectra
of graphene. They reported values of �E(0) for two electron
concentrations ne = 4.5 × 1013 and ne = 1.2 × 1014 (Fig. 3
in Ref. 18) and for two cases: suspended graphene and
with a model substrate. The values for suspended graphene
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are consistent with our theoretical estimates of −85 and
−180 meV. The discrepancy with the experimental data for
�E(0) could be due to the influence of the substrate, which
may even produce a small band gap. However, the agreement
for the Fermi velocity with Ref. 18 is not as good. For instance,
for ne = 1.2 × 1014, the velocity vF reported, is below the
value for undoped graphene by more than 10%. This is larger
than our estimate of |α| = 3%. The discrepancy is probably
due to the fact that in Ref. 18 electron-electron interaction is
also taken into account, which is important for high electron
concentration.

Finally, we investigated the influence of the doping level on
the shift �E(0), and it is shown that it increases with ne, in
agreement with experiments. Further, it was determined that
the shift decreases with an increase of the substrate effective
dielectric constant εS , since Vq ∝ 1/ε [ε = (1 + εS)/2], in
line with Ref. 2. Further, the value of �E(0) agrees well

with ab initio studies of suspended graphene18 for the two
electron concentrations. In addition to the existing theoretical
studies of the spectral function A(k,ω), the present paper
presents an alternative approach to explain the physical
nature of the energy shift and on the more complicated
energy band structure in graphene. We realized this by
considering the electron-plasmon interaction as described
by the matrix element Vq, Eq. (3), where the dependence
on doping, permittivity and other parameters are explicitly
included.
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