

J. Serb. Chem. Soc. 88 (9) S267–S270 (2023)

JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS Supplementary material

SUPPLEMENTARY MATERIAL TO Binuclear azide-bridged hydrazone Cu(II) complex: Synthesis, characterization and evaluation of biological activity

TEODORA VITOMIROV¹, BOŽIDAR ČOBELJIĆ¹, ANDREJ PEVEC², DUŠANKA RADANOVIĆ³, IRENA NOVAKOVIĆ³, MILICA SAVIĆ³, KATARINA ANĐELKOVIĆ¹ and MAJA ŠUMAR-RISTOVIĆ¹*

¹University of Belgrade – Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia, ²Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia and ³University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia

J. Serb. Chem. Soc. 88 (9) (2023) 877-888

ANALYTICAL AND SPECTRAL DATA

Elemental analysis for $C_{14}H_{20}ClN_5O$ (%). Calcd.: C 54.28, H 6.51, N 22.61. Found: C 54.68, H 7.09, N 22.13.

IR (ATR, cm⁻¹) selected peaks: 3377.4 (m), 3068.5 (m), 3019.4 (m), 2976.5 (m), 1703.4 (s), 1618.3 (w), 1571.8 (m), 1550.4 (m), 1491.2 (m), 1431.9 (m), 1398.4 (s), 1333.1 (m), 1280.2 (m), 1231.0 (m), 1164.0 (m), 1125.8 (m), 987.3 (m), 947.3 (m), 919.3 (m), 858.8 (w), 818.5 (m), 800.1 (m), 710.9 (m), 655.4 (m), 609.1 (w).

¹H-NMR (400 MHz, DMSO- d_6), δ (ppm): 11.66 (s, 1H, N2-H), 11.50 (s, 1H, N4-H), 8.15–7.72 (4H, C1-H, C2-H, C4-H, C5-H),4.91 (s, 2H, C11-H), 3.34 (t, 9H, C12-H), 2.32 (s, 3H, C9-H).

¹³C-NMR (125 MHz, DMSO-*d*₆), δ (ppm):167.24 (C10), 161.48 (C8), 156.29–120.21 (C1, C2, C3, C4, C5, C6, C7), 63.21 (C11), 53.74 (C12), 12.73 (C9).

Elemental analysis for $C_{28}H_{38}B_2Cu_2F_8N_{16}O_2$ (%). Calcd.: C 36.11, H 4.11, N 24.06. Found: C 35.74, H 4.25, N 24.58.

IR (ATR, cm⁻¹) selected peaks: 3350.3 (*w*), 3098.4 (*w*), 3044.3 (*w*), 2988.8 (*w*), 2063.4 (*s*), 1583.1 (*s*), 1557.8 (*s*), 1530.8 (*s*), 1501.3 (*m*), 1483.2 (*s*), 1441.4 (*m*), 1400.5 (*m*), 1347.7 (*m*), 1319.7 (*m*), 1296.1 (*m*), 1248.7 (*m*), 1185.3 (*m*), 1118.1 (*m*), 1034.8 (*s*), 997.2 (*m*), 972.1 (*m*), 926.3 (*m*), 910.6 (*m*), 815.7 (*m*), 733.2 (*m*), 655.2 (*w*).

S267

Available on line at www.shd.org.rs/JSCS/

^{*}Corresponding author. E-mail: majas@chem.bg.ac.rs

VITOMIROV et al.

TABLE S-I. Selected bond lengths (Å) and angles (°) for $[Cu_2L_2(\mu_{1,3}-N_3)_2](BF_4)_2$.

Cu1–O1	1.930(3)	O1–Cu1–N6	92.72(13)
Cu1–N1	1.972(3)	O1–Cu1–N1	170.34(13)
Cu1–N3	1.975(3)	N6-Cu1-N1	93.99(14)
Cu1–N6	1.957(3)	O1–Cu1–N3	82.34(13)
Cu1–N8 ^a	2.426(4)	N6-Cu1-N3	167.13(14)
N3–C8	1.297(5)	N1–Cu1–N3	89.64(14)
N3-N4	1.391(5)	O1–Cu1–N8 ^a	91.62(14)
N4C10	1.301(5)	N6–Cu1–N8 ^a	95.51(14)
O1–C10	1.287(5)	N1–Cu1–N8 ^a	94.65(14)
N6-N7	1.188(5)	N3–Cu1–N8 ^a	96.49(14)
N7–N8	1.157(5)		
Summetry	la = r + r + 1		

Symmetry code a = -x, -y, -z+1

S268

TABLE S-II. Bridging me	odes of azido lig	ands in binuclea	r Cu(II)-complexes	with hydrazone-
based NNO-donor ligands	š.			

CCDC numbers of binuclear Cu(II)-azido complexes with NNO donor hydrazone ligands	Bridging modes of azido ligands	Cu(II)-ligand chelate ring-system	References
$[Cu_2L_2(\mu_{1,3}-N_3)_2](BF_4)_2$	double EE^a (di- μ -1,3-N ₃)	6-5	this work
978363	double EO ^b (di- μ -1,1-N ₃)	5-5	[1]
843830	double EO ^b (di- μ - _{1,1} -N ₃)	5-5	[2]
615282	double EO ^b (di- μ -1,1-N ₃)	5-5	[3]
704271	double EO ^b (di- μ -1,1-N ₃)	5-5	[4]
649737	double EO ^b (di- μ - _{1,1} -N ₃)	5-5	[5]
1920797	double EO ^b (di- μ -1,1-N ₃)	5-5	[6]
1886535	double EO ^b (di- μ -1,1-N ₃)	5-5	[7]
902698	double EO ^b (di- μ - _{1,1} -N ₃)	5-5	[8]
1569840	double EO ^b (di- μ -1,1-N ₃)	5-5	[9]
797642	double EO ^b (di- μ -1,1-N ₃)	5-5	[10]
1945216	double EO ^b (di- μ -1,1-N ₃)	5-5	[11]
1983984	double EO ^b (di- μ - _{1,1} -N ₃)	5-5	[12]

 $^{a}EE = end-to-end; ^{b}EO = end-on$

TABLE S-III.	Hydrogen-bond	parameters for	$[Cu_2L_2(\mu_{1,3})]$	$-N_3)_2$ (BF ₄) ₂
	2 0	1	L 2 20 1,0	J/23 (1/2

D–H…A	D-H (Å)	H…A (Å)	D…A (Å)	D–H···A (°)	Symm. Operation on A
N2–H2N…F3	0.92(4)	2.48(4)	3.390(8)	167(5)	2- <i>x</i> , 1- <i>y</i> , 1- <i>z</i>
C4–H4…F4A	0.93	2.39	3.249(12)	154	
C4–H4…F4B	0.93	2.50	3.418(16)	167	
C5-H5N8	0.93	2.52	3.369(7)	151	1+x, 1+y, z
C11-H11A…F2	0.97	2.48	3.350(11)	149	1 - x, -y, 1 - z
C11-H11B…F2	0.97	2.38	3.316(10)	163	x, y, 1+z
C14–H14A…F1	0.96	2.55	3.460(9)	159	-1+x, y, 1+z

SUPPLEMENTARY MATERIAL

C14–H14B…F4A	0.96	2.48	3.181(10)	129	1- <i>x</i> , <i>1</i> - <i>y</i> , 1- <i>z</i>
Intra C9–H9A…N4	0.96	2.26	2.675(8)	105	
Intra C13-H13B…O1	0.96	2.58	3.162(6)	119	

TABLE S-IV. Intermolecular $\pi \cdots \pi$ interaction parameters for complex 1							
$Cg(I)^{a}$	$Cg(J)^{a}$	$Cg(I)\cdots Cg(J)^{b}$ (Å)	α ^c (°)	β^{d} (°)	ý (°)	Slippage ^f (Å)	Sym. code on (<i>J</i>)
Cg(1)	Cg(1)	3.460(3)	0.0(2)	4.0	4.0	0.240	1-x, 1-y, 1-x

^a Labels of aromatic rings: (1) = N(2), C(5), C(4), C(3), C(7), C(6).

^bCg(I)···Cg(J) = Distance between ring centroids (Ang.).

 $^{c}\alpha$ = Dihedral angle between planes (*I*) and (*J*) (Deg).

^d β = Angle between Cg(*I*)–Cg(*J*) vector and normal to plane (*I*) (Deg).

 $^{e}\gamma$ = Angle between Cg(*I*)–Cg(*J*) vector and normal to plane (*J*) (Deg).

Slippage = Distance between Cg(I) and perpendicular projection of Cg(J) on ring (I) (Ang).

Fig. S-1. Crystal packing, showing intermolecular $\pi \cdots \pi$ and C–H \cdots N contacts between dimeric complex cations extending in [110] direction.

REFERENCES

- 1. B. Shaabani, A. A. Khandar, H. Mobaiyen, N. Ramazani, S. S. Balula, L. Cunha-Silva, *Polyhedron* **80** (2014) 166 (http://dx.doi.org/10.1016/j.poly.2014.03.033)
- B. Shaabani, A. A. Khandar, F. Mahmoudi, M. A. Maestro, S. S. Balula, L. Cunha-Silva, *Polyhedron* 57 (2013) 118 (http://dx.doi.org/10.1016/j.poly.2013.04.016)

Available on line at www.shd.org.rs/JSCS/

VITOMIROV et al.

- S. Sen, S. Mitra, D. L. Hughes, G. Rosair, C. Desplanches, *Polyhedron* 26 (2007) 1740 (http://dx.doi.org/10.1016/j.poly.2006.12.015)
- R. N. Patel, J. Coord. Chem. 63 (2010) 1207 (http://doi.org/10.1080/00958971003735432)
- A. Ray, S. Banerjee, R. J. Butcher, C. Desplanches, S. Mitra, *Polyhedron* 27 (2008) 2409 (http://dx.doi.org/10.1016/j.poly.2008.04.018)
- L.-Y. Xie, Y. Zhang, H. Xu, C.-D. Gong, X.-L. Du, Y. Li, M. Wang, J. Qin, Acta Cryst., C 75 (2019) 927 (http://dx.doi.org/10.1107/S2053229619008040)
- M. R. Milenković, A. T. Papastavrou, D. Radanović, A. Pevec, Z. Jagličić, M. Zlatar, M. Gruden, G. C. Vougioukalakis, I. Turel, K. Anđelković, B. Čobeljić, *Polyhedron* 165 (2019) 22 (http://dx.doi.org/10.1016/j.poly.2019.03.001)
- 8. H. Hosseini-Monfared, R. Bikas, R. Szymczak, P. Aleshkevych, A. M. Owczarzak, M. Kubicki, *Polyhedron* 63 (2013) 74 (http://doi.org/10.1016/j.poly.2013.06.055)
- M. M. Fousiamol, M. Sithambaresan, V. A. Smolenski, J. P. Jasinski, M. R. P. Kurup, *Polyhedron* 141 (2018) 60 (http://dx.doi.org/10.1016/j.poly.2017.11.024)
- 10. A. Datta, K. Das, Y.-M. Jhou, J.-H. Huang, H.M. Lee, *Acta Cryst., E* 66 (2010) m1271 (https://dx.doi.org/10.1107/S16005368100348609)
- M. M. Fousiamol, M. Sithambaresan, K. K. Damodaran, M. R. P. Kurup, *Inorg. Chim. Acta* 501 (2020) 119301 (http://dx.doi.org/10.1016/j.ica.2019.119301)
- 12. R. Bikas, M. S. Krawczyk, T. Lis, *ChemistrySelect* **5** (2020) 6759 (http://dx.doi.org/10.1002/slct.202001032).

S270