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Abstract: While dental poly methyl methacrylate(PMMA) possesses distinctive qualities such as ease
of fabrication, cost-effectiveness, and favorable physical and mechanical properties, these attributes
alone are inadequate to impart the necessary impact strength and hardness. Consequently, pure
PMMA is less suitable for dental applications. This research focused on the incorporation of Strontium
titanate (SrTiO3-STO) and hybrid filler STO/Manganese oxide (MnO2) to improve impact resistance
and hardness. The potential of STO in reinforcing PMMA is poorly investigated, while hybrid filler
STO/MnO2 has not been presented yet. Differential scanning calorimetry is conducted in order to
investigate the agglomeration influence on the PMMA glass transition temperature (Tg), as well as the
leaching of residual monomer and volatile additives that could pose a threat to human health. It has
been determined that agglomeration with 1 wt% loading had no influence on Tg, while the first scan
revealed differences in evaporation of small molecules, in favor of composite PMMA-STO/MnO2,
which showed the trapping potential of volatiles. Investigations of mechanical properties have
revealed the significant influence of hybrid STO/MnO2 filler on microhardness and total absorbed
impact energy, which were increased by 89.9% and 145.4%, respectively. Results presented in this
study revealed the reinforcing potential of hybrid nanoparticles that could find application in other
polymers as well.

Keywords: nanoparticles; SrTiO3/MnO2; PMMA composite; mechanical properties

1. Introduction

Various polymers have widespread use in the field of dentistry, from bone cement ma-
terials or repairs to drug delivery [1–3]. Among these, poly methyl methacrylate (PMMA)
stands out as a versatile polymer extensively utilized for crafting orthodontic retainers,
dentures, and repairs, as well as artificial teeth [4–6]. Scheme 1 illustrates an array of
advantages and applications of PMMA. Years of research and practical application have
established that PMMA provides durability, nontoxicity, ease of processing, and hence,
economic viability, as well as high biocompatibility [7].

However, along with the noted advantages, there are important drawbacks in me-
chanical properties that hinder widespread PMMA application [8,9], leading to studies on
the improvement of mechanical strength, toughness, impact resistance, and hardness [10].
One of the approaches to enhance the mechanical performance of PMMA is by introducing
fillers that can tune both, mechanical and functional properties. Numerous studies have
presented improvements in targeted PMMA properties materials by incorporating fibers or
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nanoparticles [11–17]. Among the versatile selection of nanoparticles, silica (SiO2), alumina
(Al2O3), titania (TiO2), and zirconia (ZrO2) are the most investigated as reinforcements for
PMMA, due to their mechanical and antibacterial potential [17–22]. These particles are also
known for their ability to form various surface architectures at microscopic and nanoscopic
levels, which further enables control of various functional properties [23]. Vojdani et al.
improved hardness by 13% with the addition of 5 wt% of alumina to PMMA [24]. Hata et al.
reported a more than 100% increase in hardness with 23% of nanoporous silica [25]. On
the other side, Alhotan et al. achieved only a 10% hardness increase with 7% of nano-
zirconia [26]. Furthermore, Gad et al. discovered that, although ZrO2 increases flexural
properties, it also decreases the impact strength of PMMA [27].
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In order to enhance mechanical properties and overcome challenges involving the
enhancement of one property at the expense of another, research has been focused on
the hybrid concept i.e., combinations of different particles, nanotubes, or fibers, with the
aim of achieving a synergistic effect between the reinforcements. Recently, Naznin et al.
increased the tensile strength of PMMA by 329% by incorporating graphene oxide and
mesoporous micro-silica (SiO2) [28]. Chen et al. incorporated nanoparticles of TiO2 and
micro poly(ether ether ketone) (PEEK) in order to increase the bending strength and flexural
modulus of PMMA. With 1 wt% of TiO2 and PEEK, both flexural strength and modulus
increased by 10% compared to control PMMA [29]. Alqahtani et al. reported that with
a 10% load of Zirconia-Yttria (ZrO2-Y2O3) hardness of PMMA was increased 4.5 times,
while flexural strength showed an increase of 7 times [30]. The same group incorporated
hexagonal boron nitride (h-BN) in PMMA, varying concentration and particle size [31].
They reported a 2.7 times increase in hardness with 5 wt% of h-BN loading. By using hybrid
reinforcement Al2O3/TiO2 nanoparticles, Nabhan et al. increased the fracture toughness
of PMMA by 10% with only 1.6 wt% of the filler [32]. According to Wu et al., with 9% of
nano hydroxyapatite and 12.5% nano alumina, a 40% increase in fracture toughness could
be achieved [33]. Obviously, applying multiple reinforcements within the same polymer
matrix brings more benefits than using individual fillers. Additionally, hybrid particles can
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enable the enhancement of biocompatibility and bioactivity, as shown by Beketova et al. in
the investigation of the ZrO2-Y2O3 system [34].

Numerous ongoing studies are focused on processing PMMA-based nanocomposites,
where there are still many challenges to improving mechanical properties without disrupt-
ing biocompatibility or cost-effectiveness. A perovskite-structured oxide called strontium
titanate (SrTiO3-STO) is known for its excellent piezoelectric, dielectric, and thermoelectric
properties, as well as photocatalytic activity [35–37]. However, it has also been recog-
nized in medicine, due to biocompatibility and bioactivity, as an osteogenesis promoter;
furthermore, STO exhibits antibacterial activity, which makes it a valuable material for
implants [38–40]. Si et al. showed that STO promotes the improvement of tribological prop-
erties, as well as the antibacterial activity when applied on titanium-based implants [41].
The potential of nanoparticle STO application in dental materials has still been limited to
implant coatings, although it could offer advantages in other fields of medicine, as it has
exceptional mechanical properties, such as high Young’s modulus, compressive strength,
and hardness [36,42].

Another oxide that could be valuable for tuning PMMA properties is manganese
oxide (MnO2), due to its nontoxicity, antibacterial activity, resistance to acids, and low
cost [43–46]. Although MnO2 has mostly been researched for its catalytic activity, its use in
medicine and environmental protection was recently emphasized as well [47,48]. There
are very few studies on the mechanical benefits of the incorporation of MnO2 in polymer
matrices. However, Balguri et al. recently reported that with only 0.1 wt% of MnO2, the
impact strength of epoxy was improved by 35% [49]. Zhao et al. incorporated MnO2
in polyvinylidene fluoride (PVDF) in order to enhance the piezoelectric and mechanical
performance of composites [50]. With 1.5 wt% loading of MnO2, Young’s modulus was
increased by 75%, showing the reinforcing potential of this oxide.

While there is obvious potential for STO and MnO2 nanoparticle-reinforced PMMA,
there is a lack of research investigating the influence of these ceramic materials on the me-
chanical properties of PMMA, with a special emphasis on impact resistance and hardness,
which are crucial for dental materials. This research focuses on the mechanical perfor-
mance of PMMA reinforced with STO and hybrid STO/MnO2 nanoparticles. Obtained
composites showed significant improvement in Young’s modulus of elasticity, hardness,
and impact resistance.

2. Materials and Methods
2.1. Materials

SrTiO3, nanopowder and MnO2 were purchased from Sigma–Aldrich. PMMA was pur-
chased from AKRILAT, Serbia. Commercial dental acrylic resin is made of two components
system, liquid and powder. The liquid part contains methyl metacrylate (MMA)—monomer
and inhibitor, while the powder contains PMMA, initiator, plasticizer, and pigments. Upon
mixture of the two parts, the initiator neutralizes the effect of the inhibitor allowing the
polymerization reaction to start.

2.2. Preparation of Samples

SrTiO3/MnO2 (STO/MnO2) nanoparticles were prepared by milling for 30 min and
heating for 2 h at 1000 ◦C, with a 5 ◦C/min heating rate, in N2 atmosphere. The molar ratio
SrTiO3:MnO2 was 5:1.

Composites were prepared in three steps:

• Particles were placed in a liquid part containing MMA, and mixed on a magnetic
stirrer, followed by ultrasonic homogenization.

• The liquid part with STO/MnO2 nanoparticles was mixed with powder in a volumetric
ratio of 35/100, in accordance with the manufacturer’s instructions.

• The mixture was poured into a mold and left for 24 h at room temperature.
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The overall concentration of nanoparticles was 1 wt%. Samples were labeled as follows:
PMMA, PMMA-STO, and PMMA-STO/MnO2.

2.3. Characterization of Samples

For morphological analysis of samples, field emission scanning electron microscopy
(FESEM) was utilized with Tescan Mira 3 instruments (Brno, Czech Republic), where gold
was sputtered prior to imaging. Particle size was determined by analysis of three FESEM
images using the software Image-Pro Plus 6.0 (Rockville, MD, USA). Structural analysis of
STO/MnO2 nanoparticles was performed using an X-ray diffractometer (XRD) Ultima IV,
Rigaku (Tokyo, Japan). The measurement was performed using Cu Kα radiation, with the
following measurement parameters: 2θ angle range from 20◦ to 80◦, speed 10◦ min−1, step
scan 0.02◦. For the structural analysis of PMMA and composites, Fourier transform infrared
spectroscopy (FTIR) was performed using a Thermo Scientific Nicolet iS10 spectrometer
(Hartmann & Braun, MB-series, Bockenheim, Germany), in the range from 4000 to 500 cm−1,
with a resolution of 4 cm−1. Differential scanning calorimetry (DSC) was performed on
Shimadzu DSC-60Plus (Kyoto, Japan). The sample weight was 6 ± 0.5 mg. Initially, the
samples underwent heating from 24 ◦C to 160 ◦C, with a heating rate of 10 ◦C/min in
the presence of a nitrogen gas flow (50 mL/min). Subsequently, the second heating cycle
was conducted under identical conditions. The data from the second heating cycle were
used for the determination of Tg. Tensile test of pure PMMA and composites was obtained
by texture analyzer Shimadzu EZ Test LX, in accordance with ISO 527-2 standard (Kyoto,
Japan) for plastics. The device was equipped with a 500 N load cell, applied strain rate
was 10 mm/min. Cross-section area and gauge length were measured before each test.
Trapezium 1.5.2 software (Duisburg, Germany) by Shimadzu was used for the calculation
of modulus of elasticity and tensile strength. All of the measurements were performed
at room temperature. Microindentation testing was performed on the same device, with
the following parameters set: 500 N load cell, a spherical indenter of 4 mm diameter,
indentation rate of 0.25 N/s. The maximum load of 5 N was kept for 20 s, after which
was decreased at the same rate of 0.25 N/s. The output results were force, time, and
relative position of the indenter. Measurements were performed on three points for each
sample, to reduce the influence of possible inhomogeneity. High-speed puncture impact
testing machine HYDROSHOT HITS-P10, Shimadzu (Kyoto, Japan), was used for the
investigation of nanoparticle influence on the impact resistance of PMMA. Absorbed energy
(total absorbed energy-Etot and energy at maximum load-Efmax) values were calculated
automatically from the load-time diagram. The diameter of the striker was 12.7 mm, with
a hemispherical head; the set impact force was 10 kN, and impact velocity and depth
were 0.15 m/s and 1 mm, respectively. For impact testing, samples had dimensions
6 × 6 × 3 cm3. Each measurement was performed on three samples, with the average
values noted in the results.

3. Results and Discussion
3.1. FESEM of STO/MnO2 Nanoparticles

Figure 1a shows an FESEM image of prepared STO/MnO2 particles. As can be seen,
spherical-shaped nanoparticles formed aggregates due to electrostatic forces, coming from
STO that is dominant in our sample [51]. Image analysis showed that the average particle
diameter was around 48 nm, with a modal value of approximately 35 nm. Distribution of
particle size (Figure 1b) revealed that more than 60% of the particles had diameters below
50 nm and 93% were below 100 nm, which suggests a successful synthesis of nanoparticles
that could contribute to the mechanical reinforcement of PMMA.
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3.2. XRD of STO/MnO2 Nanoparticles

Figure 2 shows the diffraction pattern of STO/MnO2 particles. The strongest peaks
observed in the STO/MnO2 are detected at angular positions of 32.4, 40.0, 46.3, 57.8, 67.8,
and 77.0◦. These peaks are attributed to the crystallographic planes of STO possessing
cubic symmetry, specifically corresponding to (110), (111), (200), (211), (220), and (311)
orientations [35,52]. Diffraction originating from MnO2 also shows four peaks at 28.8, 37.2◦,
56.7◦ and 72.4◦attributed to the (110), (101), (211) and (112) planes of β-MnO2 polycrystalline
nanoparticles consisting of pure single tetragonal phase system [53,54]. The peak at 22.7◦

probably belongs to orthorhombic γ-MnO2, which also exhibits peaks at 37.2◦, 56.2, and
67.8◦ that overlap with β-MnO2 and STO [55–57]. Residual SrCO3 in commercial STO was
detected at 25.1◦, corresponding to the (111) plane, which remained present even after the
heat treatment at 1000 ◦C [58].
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Results obtained by XRD analysis indicate that synthesized nanoparticles were STO/MnO2
composites, with crystal lattices intact. In this manner, properties of the separate com-
pound should be retained and the possibility of synergistic effect enhanced. Furthermore,
two phases of MnO2 were identified, β-MnO2 and γ-MnO2, as a consequence of high-
temperature treatment.

3.3. FESEM of PMMA and Composites

Morphological analysis of the fracture site was performed on FESEM images presented
in Figure 3. Particle-reinforcing effects in composites play a crucial role in determining
their mechanical properties, especially at the fracture site [59,60]. During polymerization,
various inter-constituent changes occur, such as twisting, bending, and flexing, which
influence particle-polymer interfacial surface and consequently, mechanical properties,
such as toughness and elastic behavior [61]. The following crucial toughening mechanisms
can be identified in FESEM images [59]:

• Crack Bridging: Particles can bridge microcracks that form within the composite ma-
trix. As a crack attempts to propagate, it encounters bridges, which resist further crack
growth. The bridging mechanism increases the energy required for crack propagation
enhancing the composite’s fracture resistance.

• Crack Deflection: Particles can cause cracks to change direction when they encounter
the particle-matrix interface. This deflection reduces the effective crack length, increas-
ing the composite’s resistance to fracture and improving its toughness.

• Crack tip pinning: As the crack propagates and encounters a pinning point, it experi-
ences local resistance. This resistance arises due to the additional energy required to
deform the material or overcome the obstacles presented by the pinning point. The
energy required to deform the material around the pinning point, or to move the
crack past the obstacle, is dissipated as heat. This energy dissipation contributes to the
overall toughness of the material.

Comparison of PMMA morphology with composites clearly shows the reinforcing
effect of both STO and STO/MnO2 particles. Pure PMMA surface (Figure 3a) shows a
typical brittle fracture, with smooth fracture surface and river-like patterns, where plastic
deformation plays a key role in fracture resistance [62]. On the other hand, both composites,
PMMA-STO and PMMA-STO/MnO2 (Figure 3b,c), show different toughening mechanisms.
The fracture surface of both PMMA-STO and PMMA-STO/MnO2 showed higher roughness
compared to PMMA, which is directly connected to a reinforcement in the material. The
inclusion of the filler in the matrix microstructure restricts dislocation movement during
loading, thereby enhancing the strength and modulus of the composites [32]. Formation of
aggregates was observed, which also served as a reinforcement-inducing crack-pinning
mechanism [63]. Strong plastic deformation also reveals increased fracture resistance. The
dominant toughening mechanism was crack-pinning in both composites, whereas pure
STO particles formed large aggregates that participated in crack arrest through plastic void
formation as well [64]. On the fracture surface of PMMA-STO/MnO2, small aggregates
were formed, indicating better dispersion of hybrid nanoparticles in composite, presumably
due to the formation of a larger interfacial surface [61].

By increasing the magnification from 1000× to 2000× (Figure 3d,e), an obvious dif-
ference in agglomeration was observed. While STO/MnO2 showed some uniformity in
agglomerate size, pure STO showed a wide range of sizes, from around 1 µm to 20 µm.
This could be the consequence of weaker van der Waals forces in hybrid nanoparticles
compared to pure STO. However, in PMMA-STO/MnO2, a group of smaller agglomerates
surrounded by a polymer matrix was found with 5000× magnification, which caused
significant plastic deformation and void formation as a toughening mechanism. Based
on FESEM analysis, it was expected that both STO and PMMA-STO/MnO2 nanoparticles
would contribute to the reinforcement of the matrix material.
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3.4. FTIR of PMMA and Composites

In Figure 4, the infrared spectra of the pristine PMMA, PMMA-STO, and PMMA-
STO/MnO2 are presented. In order to emphasize the differences between spectra, especially
in the fingerprint region, region 1500–500 cm−1 was enlarged in Figure 4. The asymmetric
stretching of C-H bonds, present in -CH3 manifests itself at 2995 cm−1 in all spectra [65].
At 2925 and 2856 cm−1, asymmetric and symmetric C-H stretch in -CH2 was observed,
respectively. Notably, the stretching vibration of the ester group’s C=O bond is prominently
evident at approximately 1721 cm−1 [66]. The strong peak at 1430 cm−1 originates from
the asymmetric bending vibrations of the C-CH3. Two sets of doublet bands, one at 1267
and 1241 cm−1 and the other at 1143 and 1183 cm−1 can be attributed to the C-O stretching
vibrations within the ester groups [67,68]. Out-of-plane -CH bending is present in the
region from 900 to 720 cm−1 [62,69]. In the spectrum of PMMA-STO/MnO2, a minor band
at 875 cm−1 could be associated with the bending of CH from C=CH2 in residual monomer
methyl methacrylate, indicating that agglomerates act as interceptors for monomer during
polymerization reaction. Furthermore, peaks visible at 3277 cm−1 originate from stretching
vibrations of hydroxyl groups related to the STO/MnO2 nanoparticles [55]. Bands at
1637 cm−1 and 1320 cm−1 come from -OH bending. The most prominent peaks in the
FTIR spectrum of STO are related to the stretching vibrations of Ti-O bonds. These peaks
are typically observed in the range of 500–800 cm−1. Sr-Ti-O stretching in STO appeared
at 580 cm−1 in both composites as a weak band, which is expected due to a low particle
concentration [70,71]. Vibrations from Mn-O are visible at 536 cm−1 [72].
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FTIR analysis revealed that hybrid STO/MnO2 nanoparticles had a minor influence
on influence on polymerization of MMA. The identification of nanoparticles at randomly
chosen sites indicates that some level of uniformity was achieved, without the chemical
modification of particles.

3.5. Differential Scanning Calorimetry (DSC)

Particle agglomeration could lead to deterioration of mechanical properties, acting
as stress concentration points that lead to a crack formation. Furthermore, large par-
ticles/agglomerates may act as plasticizers, increasing chain mobility and decreasing
intermolecular forces that resist applied mechanical force. This is connected to thermal
behavior, characterized by glass transition temperature (Tg). In order to investigate whether
agglomeration lead to a decrease in Tg, DSC analysis was performed. Figure 5a shows that
the formation of nanoparticle agglomerates had no significant influence on Tg, which is
around 96.0 ◦C in all samples. This finding is indicative and important for the mechanical
performance of composites and is in agreement with the literature, where it has been proven
that low particle concentrations do not lead to a decrease in composite Tg.

The first scan presented in Figure 5b shows differences between samples during
heating. In PMMA straight baseline was observed until 62.8 ◦C, where an onset for a weak
endothermic peak at 77.0 ◦C was observed. Another endotherm was observed at 104.8 ◦C,
with an onset at 84.0 ◦C. On the other side, PMMA-STO/MnO2 showed the first endotherm
at 59.0 ◦C, followed by a weak one at 75.9 ◦C and a strong peak at 103.3 ◦C. PMMA-STO had
a minor endotherm at 57.3 ◦C, stronger at 72.2 ◦C, and a major peak at 101.4 ◦C. The boiling
point of MMA is 100 ◦C, which indicates that in pure PMMA, the monomer was trapped
by the polymer chains more efficiently than in composites. Particle agglomerates enabled
more mobility for MMA, leading to evaporation at temperatures close to the unhindered
monomer. However, these temperature shifts are minor, which leads to the conclusion
that there would not be a significant difference in monomer leaching [73]. Furthermore,
although other weaker endotherms indicate that volatile additives are easier to release
and leach in composites, in PMMA-STO/MnO2 there was a weaker endothermic peak
compared to PMMA around 76 ◦C, which indicates that hybrid nanoparticles could more
efficiently trap some of the smaller molecules. In light of the results based on thermal
analysis, it can be assumed that STO/MnO2 agglomerates do not pose a problem from a
medical point of view as well.
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3.6. Mechanical Properties

Results obtained from tensile test, microindentation, and controlled energy impact
test are presented in Table 1 and Figure 5. Modulus of elasticity increased by 39.6% in
PMMA-STO and 44.0% in PMMA-STO/MnO2, compared to the pure PMMA. Tensile
strength was approximately the same in PMMA-STO and PMMA-STO/MnO2, respectively,
29.4% and 29.9% higher than for PMMA. The interface that arises from the bonding be-
tween filler particles and polymer chains leads to enhanced mechanical properties in the
modified composites compared to the pristine material [74]. Specifically, when STO and
STO/MnO2 nanoparticles were employed to reinforce PMMA, a robust interface ensured
that the applied load was transmitted to the resilient inorganic nanoparticles, subsequently
distributing it across multiple polymer chains, safeguarding the matrix.

Table 1. Mechanical properties of PMMA and composites.

PMMA PMMA-STO PMMA-STO/MnO2

Modulus of elasticity, MPa 720.6 ± 22.13 1006.0 ± 15.37 1037.3 ± 24.63

Tensile strength, MPa 23.1 ± 1.22 29.9 ± 1.86 30.0 ± 1.41

Hardness, MPa 14.8 ± 0.43 19.2 ± 1.82 28.1 ± 2.23

Etot, J 1.1 ± 0.16 1.9 ± 0.14 2.7 ± 0.21

Microindentation measurements revealed that hardness was increased by 29.7% in
PMMA-STO and by 89.9% in PMMA-STO/MnO2, which indicates that the small amounts
of hybrid STO/MnO2 nanoparticles can significantly improve mechanical performance.
Furthermore, reduced modulus increased by 45.0% in PMMA-STO and by 66.1% in PMMA-
STO/MnO2. Compared to the studies that investigated the influence of alumina, silica,
and zirconia with higher loadings, improvements observed in both composites show great
reinforcing potential [26–28]. This phenomenon could be attributed to the considerably
higher hardness of the particles in comparison to pure PMMA, thus contributing to an
increased load-bearing capacity [32]. The difference in the results between PMMA-STO
and PMMA-STO/MnO2 is a consequence of better STO/MnO2 dispersion in the matrix,
which indicates that MnO2 contributed to better adhesion between the hybrid particles and
the matrix.

The energy absorption process during impact can be divided into distinct phases, as
follows [57]:

1. Initial Crack Formation Phase: In this first phase, energy is absorbed as the crack
initially forms within the material. It encompasses both the elastic response of the
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material and any minimal plastic deformation. For fully cured epoxy resins, this phase
is characterized by relatively low energy absorption. The maximum load (Fmax) is
achieved at the conclusion of this phase, and the energy absorbed up to this point is
denoted as Efmax.

2. Crack Propagation and Material Deterioration Phase: The second phase commences
with the formation of the crack and extends until the material eventually fails or
ruptures. During this phase, there is a notable degradation of mechanical properties.
The total absorbed energy (Etot) encompasses all the energy absorbed from the start
of the controlled energy impact test until the load drops below zero, marking the
conclusion of the test.

These phases are associated with different types of failure, depending on the material’s
propensity for plastic deformation:

• Brittle Failure: This type of failure is characteristic of materials like ceramics and rigid
polymer structures, such as cross-linked polymers forming 3D covalently bonded
networks. Brittle failure is characterized by minimal or no plastic deformation, rapid
fracture propagation, and a low Etot value.

• Brittle-Ductile Fracture: In this scenario, there is a limited degree of plastic deformation
that occurs just before the material breaks. It represents an intermediate stage between
brittle and ductile behaviors.

• Ductile-Brittle Failure: Materials exhibiting this type of failure have the capacity for
plastic deformation and can absorb more energy during impact compared to brittle
materials. They undergo some plastic deformation before ultimately fracturing.

• Ductile fracture: The fourth type of failure is characterized by substantial plastic
deformations occurring before fracture. Materials that exhibit this behavior absorb a
significant amount of energy during the impact, resulting in a high Etot value.

These distinctions in failure modes and energy absorption characteristics are crucial
for understanding how different materials respond to impact loads and for assessing their
suitability for various applications. Figure 6 shows failure types for PMMA, PMMA-
STO, and PMMA-STO/MnO2. PMMA shows brittle failure, which is expected since it is
considered a brittle thermoplastic polymer [75]. With the addition of STO, fracture changed
to brittle-ductile, which is the consequence of energy dissipation during crack pinning
and plastic void formation, observed on FESEM images. In PMMA-STO/MnO2, failure
mode became ductile-brittle, indicating that STO/MnO2 have stronger interaction with the
matrix, which was indicated in FESEM analysis, where smaller aggregates were observed
than in PMMA-STO. However, STO particles led to an increase of 72.7% in Etot, which is a
significant improvement in impact resistance. Compared to Balguri et al., where a similar
amount of pure MnO2 was used, the increase of 145.4% in total absorbed impact energy
achieved in this study shows the remarkable effect of synergy between STO and MnO2
nanoparticles [49].

In order to verify the statistically significant mechanical improvement, the Student’s
t-test was performed for the results presented in Table 1 [76]. Arithmetic means of control
series (PMMA) were compared with PMMA-STO and PMMA-STO/MnO2. High t- and
low p-values presented in Table 2 illustrate high statistical significance (threshold: t > 1.96,
p < 0.05) of an increase in all the mechanical properties.

The results obtained from the tensile test, microindentation and controlled energy
impact test revealed that there is a high potential for using novel STO/MnO2 nanoparticles
as mechanical reinforcement. Furthermore, these results were obtained without the chem-
ical modification of nanoparticles, which is usually required for significant mechanical
improvements [75]. Since both STO and MnO2 have been already investigated and proven
for their biocompatibility and antibacterial activity, the main scope of our future research
will be on varying nanoparticle concentration and investigating antibacterial activity.
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Table 2. Results of Student’s t-test.

PMMA-STO * PMMA-STO/MnO2 ‡

t-Value p-Value t-Value p-Value

Modulus of
elasticity 18.3465 <0.0001 16.5664 <0.0001

Tensile strength 5.2949 0.0061 6.4097 0.0030

Hardness 4.0752 0.0152 10.1433 0.0005

Etot 6.5175 0.0029 10.4970 0.0005

* Group 1: PMMA, Group 2: PMMA-STO; n (number of measurements) = 3. ‡ Group 1: PMMA, Group 2:
PMMA-STO/MnO2; n (number of measurements) = 3.

4. Conclusions

In this research, two types of nanoparticulate fillers, STO and hybrid STO/MnO2, have
been used as reinforcements for dental (PMMA), with the aim of improving its low impact
resistance and hardness. Hybrid STO/MnO2 nanoparticles were obtained by sintering at
1000 ◦C and incorporating them in the liquid part of the two-component dental PMMA
resin, with 1 wt% concentration. Structural analysis of hybrid nanoparticles revealed the ex-
istence of cubic STO, as well as β-MnO2 and γ-MnO2. The results of DSC analysis indicated
that agglomeration of nanoparticles with a 1 wt% loading had no significant impact on Tg.
However, the first DSC scan revealed disparities in the evaporation of small molecules, with
some favoring PMMA-STO/MnO2 composite that demonstrated a potential for trapping
volatiles. Morphological characterization revealed synergy between STO and MnO2 in
STO/MnO2 nanoparticles, leading to a better dispersion in the matrix, compared to STO.
As a consequence of a better dispersion, a higher improvement in PMMA mechanical
performance was achieved. In the PMMA-STO composite, microhardness was increased by
29.9%, modulus of elasticity by 39.6%, and total absorbed impact energy (Etot) by 72.7%,
which showed that even with the formation of aggregates, STO represents a promising
reinforcement for PMMA. Composite PMMA-STO/MnO2 has shown an increase in micro-
hardness by 89.9%, and modulus of elasticity by 44.0%, while Etot values rose by 145.4%.
These results indicated that a low concentration of novel hybrid STO/MnO2 nanoparticles
could lead to an outstanding mechanical performance by a PMMA-based material.
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