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ABSTRACT 

 

The aim of this study was to predict the retention indices of chemical compounds found in the 

aerial parts of Origanum vulgare subsp. vulgare essential oil, obtained by hydrodistillation and 

analyzed by GC-MS. A total number of 28 compounds were detected in the essential oil. The 

compounds with the highest relative concentrations were germacrene D (21.5%), 1,8-cineole 

(14.2%), sabinene (14.0%) and trans-caryophyllene (13.4%). The retention time was predicted by 

using the quantitative structure–retention relationship, using seven molecular descriptors chosen 

by factor analysis and genetic algorithm. The chosen descriptors were mutually uncorrelated, and 

they were used to develop an artificial neural network model. A total number of 28 experimentally 

obtained retention indices (log RI) were used to set up a predictive quantitative structure-retention 

relationship model. The coefficient of determination for the training cycle was 0.998, indicating 

that this model could be used for predicting retention indices for O. vulgare subsp. vulgare 

essential oil compounds. 

Keywords: oregano, essential oil, hydrodistillation, GC-MS, QSSR, ANN 

 

Introduction  

Origanum is an important genus with multipurpose medicinal and spice plants. It belongs 

to the family Lamiaceae and is comprised of 42 species divided into 10 sections. Most Origanum 

species are locally distributed within the Mediterranean region where they grow in the 

mountainous areas on the islands, with high endemism rate (Lukas, 2010). However, among all 

sections in the genus, only section Origanum is monospecific, consisting of the species O. vulgare, 

but with the largest distribution area. Because of this, O. vulgare is an extremely variable species 

that includes six subspecies (subsp. vulgare, subsp. glandulosum, subsp. gracile, subsp. hirtum, 

subsp. viridulum and subsp. virens) which are characterized by a high morphological and chemical 

variability (Chishti et al., 2013; Kosakowska and Czupa, 2018). In general, differences in 

morphological and chemical features represent environmental adaptation. For example, sessile 

glands on leaves and the color of bracts and corollas are the main morphological traits (Kokkini et 

al., 1994). Furthermore, the yield and quality of the essential oil depends on genetics and is strongly 

affected by the environmental influences (Goliaris et al., 2002;Toncer et al., 2009). 

O. vulgare subsp. vulgare is the most widespread species in Europe, and has longstanding 

use in traditional medicine for its carminative, stomachic, emmenagogue, and expectorant effects 

for treating cramps, flatulence, cough, or menstrual problems (Oniga et al., 2018). The main 

bioactive components of O. vulgare are essential oil and phenolic components, generated from 

cymyl- pathway such as γ-terpinene, p-cymene, carvacrol and thymol (Lukas, 2010;Stanojević et 

al., 2016). Their ratio represents the quality of the oil and indicates the aroma value (Morsy, 2017). 
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Quantitative structure retention relationship (QSRR) approach provides a deeper insight 

into the relation between the chemical compounds, their structure and the physicochemical or 

biological properties (Wolfender et al., 2015). Gas Chromatography coupled with Mass 

Spectrometry (GC-MS) extracts a huge amount of data, which could be compared and reproduced, 

and it also shows the exact retention time indices for large sets of compounds in different biological 

materials. The chemical compound structure is explained by the mathematical models, described 

by so-called molecular descriptors, which encode its data by the symbolic representation of a 

molecule into a numerical value (Héberger, 2007;Micić et al., 2019). Lately, various investigations 

were assigned to the QSRR coupled with GC-MS data analyses (Kaliszan, 2007;Khezeli et al., 

2016;Marrero-Ponce et al., 2018; Wu et al., 2013). The relation between the molecular descriptors 

and the retention time can be established by using various mathematical tools, such as the artificial 

neural network (ANN), which was proven to be excellent in solving non-linear problems 

(Wolfender et al., 2015;Zisi et al., 2017), or by using machine learning algorithms (Tropsha and 

Golbraikh, 2007).  

The aim of this study was to establish a new QSRR model for the prediction ofthe retention 

times of chemical compounds found in O. vulgare subsp. vulgare essential oil, obtained by 

hydrodistillation and analyzed by GC-MS using the coupled genetic algorithm (GA) and factor 

analysis (FA) variable selection method and the artificial neural network (ANN) model. 

Experimental  

Plant material 

Origanum vulgare subsp. vulgare was collected on the 7th July 2018, on Mt. Rtanj. The 

plant species were at full flowering by this date. The plant aboveground parts were harvested 

manually at around 2-3 cm above the soil surface, and the biomass was placed in an air-dryer until 

constant weight at 35 °C to avoid essential oil losses. Voucher specimens were confirmed and 

deposited at the Herbarium BUNS, the University of Novi Sad, Faculty of Sciences, Department 

of Biology and Ecology, under the acquisition number 2-1450. 

 

Essential oil isolation 

Air-dried aerial parts of O. vulgare subsp. vulgare were submitted to hydrodistillation 

according to Ph. Eur. 5.0(Ph. Eur. 5.0) by using the Clevenger apparatus. The 30 g of the plant 

material was placed in round-bottomed flask of 1 L and 400 mL of distilled water was added. Then 

it was heated to the boiling point. The steam in combination with the essential oils was distilled 

into a graduated tube for 2h. After separation of essential oil from aqueous phase it was dried over 

anhydrous Na2SO4 and stored in a dark glass vial at 4 °C for further analysis. The essential oils 

yields were calculated on dry-weight basis, and average content of essential oil was 0.12%. 
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GC-MS analysis 

GC-MS analysis was carried out using an HP 5890 gas chromatograph coupled to an HP 

5973 MSD and fitted with a capillary column HP-5MS. The carrier gas was helium, and its inlet 

pressure was 25 kPa and linear velocity of 1 mL/min at 210 °C. The injector temperature was 250 

°C, and analysis was conducted under splitless injection mode. Mass detection was carried out 

under source temperature conditions of 200 °C and interface temperature of 250 °C. The EI mode 

was set at electron energy, 70 eV with mass scan range of 40–350 amu. Temperature was 

programmed from 60 °C to 285 °C at a rate of 4.3 °C/min. The components were identified based 

on their linear retention index relative to C8-C32n-alkanes, by the comparison with data reported in 

the literature (Wiley and NIST databases). Quantification was done by external standard method 

using calibration curves generated by running GC analysis of representative authentic compounds. 

 

Artificial neural network (ANN) 

A multi-layer perceptron model (MLP) consisted of the three layers (input, hidden and 

output) was used in this paper, having in mind that it is well known and proven as being capable 

of approximating nonlinear functions (Aalizadeh et al., 2016). Broyden–Fletcher–Goldfarb–

Shanno (BFGS) algorithm was used for ANN modelling. The experimental database was randomly 

divided into: train, testing and validation parts (60, 20 and 20%, respectively) for ANN modelling. 

A series of different neural network topologies was tested. The number of hidden neurons varied 

from 1 to 20 and 1,000,000 networks were tested, using random initial values of weights and 

biases. The weight coefficient was calculated during the training period, with the initial 

assumptions of parameters, which were adjusted using ANN structure and fitting (Kojic and 

Omorjan, 2018; Xuet al., 2015). The optimization process was performed on the basis of validation 

error minimization. Statistical investigation of the data has been performed mainly by the Statistica 

10 software (Statistica, 2010). 

 

Molecular descriptors 

Coupled factor analysis and genetic algorithm were used to select the most relevant 

molecular descriptors for the representation of the retention indices (Goldberg, 1989; Tropsha, 

2010), and a calculation was performed using Heuristic Lab (HeuristicLab, 3.3). The correlation 

between the obtained descriptors was examined and collinear descriptors were detected using 

factor analysis. GA was used to select the most appropriate molecular descriptors to develop a 

reliable model for the prediction of retention times of the compounds found in O. vulgare subsp. 

vulgare essential oil.  

 

QSRR analysis 

The molecular structure was introduced in the quantitative structure retention relationship 

(QSRR) calculation in the form of .smi files, which represented the structure of a molecule in a 

simplified molecular input line (Matyushin, et al. 2019). The calculation of the specified molecular 

descriptors for each chemical compound obtained in the GC-MS analysis was performed using 

PaDel-descriptor software (Dong et al., 2015; Yap, 2011). The PaDel-descriptor software was used 
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to calculate the 1875 molecular descriptors (1444 1D and 2D descriptors and 431 3D descriptors), 

which included: constitutional descriptors, topological descriptors, connectivity indices, 

information indices, 2D and 3D autocorrelations descriptors, Burden eigenvalues descriptors, 

eigenvalue-based indices, geometrical descriptors, WHIM descriptors, functional group counts, 

atom-centered fragments and molecular properties. 

 

Global sensitivity analysis 

Global sensitivity analysis was used to explore the relative influence of molecular 

descriptors on retention time (Yoon et al., 2017). This method was applied on the basis of the 

weight coefficients of the developed ANN. 

Results and Discussion  

Essential oil composition 

A total number of 28 compounds were detected in the O. vulgare subsp. vulgare essential 

oil in this study, representing 99.5% of the total oil composition (Table 1). The compounds with 

the highest relative concentration in O. vulgare subsp. vulgare essential oil were germacrene D 

(21.5%), 1,8-cineole (14.2%), sabinene (14.0%) and trans-caryophyllene (13.4%). Out of these, 

15 compounds had average relative concentrations over 1.0%. Monoterpene hydrocarbons 

(47.9%) and sesquiterpene hydrocarbons (42.9%) were the dominant classes. According to the 

obtained results, O. vulgare subsp. vulgare collected at Mt. Rtanj can be classified as germacrene 

D chemotype. This chemotype is already described (Mockute et al., 2001). Differences among the 

oregano accessions with respect to morphological traits and chemical constituents of essential oils, 

indicate the existence of intraspecific variations and chemical polymorphism (Aćimović et al., 

2020; Radusiene et al., 2005). Subspecies which accumulate carvacrol and/or thymol and their 

precursors (γ-terpinene and p-cymene) contain low amounts of other monoterpenes (Kosakowska 

and Czupa, 2018). 

 

Table 1. Chemical composition of O. vulgare subsp. vulgare essential oil from dry aerial parts. 

No Compound RIa RIb % 

1 α-Thujene 915 924 0.1 

2 α-Pinene 926 932 1.5 

3 Camphene 944 946 0.9 

4 Sabinene 967 969 14.0 

5 β-Pinene 971 974 3.9 

6 β-Phellandrene 1026 1025 1.6 

7 1,8-Cineole 1028 1026 14.2 

8 cis-β-Ocimene 1033 1032 6.8 

9 trans-β-Ocimene 1043 1044 4.5 

10 γ-Terpinene 1052 1054 0.4 

11 Borneol 1160 1165 1.2 

12 Terpinen-4-ol 1172 1174 0.3 
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13 α-Terpineol 1187 1190 0.7 

14 Bornyl acetate 1286 1287 0.1 

15 β-Bourbonene 1384 1387 1.9 

16 trans-Caryophyllene 1420 1408 13.4 

17 α-Humulene 1454 1452 2.1 

18 9-epi-trans-Caryophyllene 1461 1464 0.5 

19 Germacrene D 1486 1484 21.5 

20 Bicyclogermacrene 1497 1500 1.7 

21 (trans,trans)-α-Farnesene 1509 1505 0.7 

22 δ-Cadinene 1524 1513 1.1 

23 Germacrene D-4-ol 1575 1574 0.8 

24 Spathulenol 1577 1577 0.6 

25 Caryophyllene oxide 1583 1582 3.9 

26 Humulene epoxide II + β-Oplopenone 1606 1608 0.3 

27 epi-α-Murrolol (=tau-muurolol) 1640 1640 0.4 

28 α-Cadinol 1654 1652 0.9 

 Monoterpene hydrocarbons   47.9 

 Oxygenated monoterpenes   2.3 

 Sesquiterpene hydrocarbons   42.9 

 Oxygenated sesquiterpenes   6.9 

 Total identified   99.5 
RIa – Retention Index calculated; RIb – Retention Index from the NIST webbook database. 

 

Artificial neural network (ANN) 

Graphical representation of experimentally obtained retention time indices of O. vulgare 

subsp. vulgare essential oil composition (RIa), the retention time indices found in NIST database 

(RIb) and the retention time indices predicted by the ANN model (RIpred.) were presented in Figure 

1. 

 

 
Figure 1.Retention time indices of the O. vulgare subsp. vulgare essential oil composition, from: 

experimentally obtained GC-MS data (RIa); NIST database (RIb) and predicted by the ANN 

(RIpred.). 
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The nonlinear relationship between RIs and the selected descriptors, applying the ANN 

technique was used in this paper. The statistical results of the MLP 7-12-1 network are shown in 

Table 2. 

 

 

Table 2. ANN model summary (performance and errors), for training, testing and validation 

cycles 

Net. 

name 

Performance Error Train. 

algor. 

Error 

funct. 

Hidden 

activat. 

Output 

activat. Train. Test.  Valid. Train. Test.  Valid. 

MLP 7-12-1 0.998 0.958 0.999 53.764 2311.444 16294.67 BFGS 38 SOS Tanh Exponential 

*Performance term represent the coefficients of determination, while error terms indicate a lack 

of data for the ANN model. ANN cycles: Train. – training, Test. – testing, Valid. – validation, 

algor. –algorithm, funct. – function, activat. – activation. 

 

The better prediction of RIs was obtained in the training cycle, which was expected, 

because more chemical compounds retention time indices were used in the calculation compared 

with testing cycle. This is also obvious from Table 2, where the training set performance reached 

r2 of 0.998, while the r2 for testing set was lower. Also, better results for r2 were obtained in 

training cycle, due to the fact that these data were used for the modelling of ANN, while the data 

in testing and verification cycles were used for testing purposes and to explore the quality of the 

ANN model created in training cycle. Obtained results reveal the reliability of the ANN models 

for predicting the RIs of compounds in O. vulgare subsp. vulgare essential oil determined by GC-

MS. 

 

Molecular descriptors 

Seven molecular descriptors were chosen by FA and GA analyses for predictions of RI in 

the obtained ANN model. 

• Autocorrelation descriptors  

1. ATSC3v - Centered Broto-Moreau autocorrelation - lag 3 / weighted by van der Waals 

volumes;  

2. AATSC5c - Average centered Broto-Moreau autocorrelation - lag 5 / weighted by 

charges;  

3. AATSC1v - Average centered Broto-Moreau autocorrelation - lag 1 / weighted by van 

der Waals volumes;  

4. AATSC1e -Average centered Broto-Moreau autocorrelation - lag 1 / weighted by 

Sanderson electronegativities;  

5. GATS5p - Geary autocorrelation - lag 5 / weighted by polarizabilities,  

• Information content descriptors:  

6. BIC2 - Bond information content index (neighbourhood symmetry of 2-order);  

7. MIC0 - Modified information content index (neighbourhood symmetry of 0-order). 

 

The above mentioned molecular descriptors encode different aspects of the molecular 

structure and they were used to develop a QSRR model for prediction of retention indices of 
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compounds found in O. vulgare subsp. vulgare essential oil. The values of the selected descriptors 

were displayed in Table 3. 

 

Table 3. Molecular descriptors chosen by a genetic algorithm 

Descriptors Autocorrelation descriptors Information content  

No ATSC3v AATSC5c AATSC1v AATSC1e GATS5p BIC2 MIC0 

1 -881.860 1.2E-04 3.158 3.3E-04 0.563 0.768 6.797 

2 -1182.918 -1.1E-04 3.158 3.3E-04 0.762 0.768 6.797 

3 -1209.560 4.2E-04 3.158 3.3E-04 0.431 0.698 6.797 

4 -868.539 3.1E-04 3.158 3.3E-04 0.594 0.742 6.797 

5 -1169.597 -2.1E-04 3.158 3.3E-04 0.766 0.742 6.797 

6 -694.032 2.5E-04 0.000 8.4E-17 0.798 0.790 6.797 

7 -984.187 3.2E-05 1.156 2.1E-03 0.973 0.545 9.466 

8 -823.247 2.7E-04 -3.410 -3.6E-04 0.717 0.686 6.797 

9 -753.977 2.4E-04 0.000 8.4E-17 0.745 0.688 6.797 

10 -1240.975 -2.0E-04 4.092 -2.6E-03 0.069 0.647 9.466 

11 -901.854 9.7E-04 1.111 -2.8E-03 0.634 0.763 9.466 

12 -1197.667 2.0E-04 0.865 1.0E-03 0.313 0.679 10.663 

13 -1164.268 1.5E-04 4.159 4.4E-04 0.932 0.704 6.797 

14 -1354.761 5.4E-05 2.131 2.2E-04 0.963 0.753 6.797 

15 -1530.600 1.4E-04 0.000 8.4E-17 0.930 0.683 6.797 

16 -1354.761 5.4E-05 2.131 2.2E-04 0.963 0.753 6.797 

17 -739.324 1.4E-04 0.000 8.4E-17 0.941 0.772 6.797 

18 -1398.721 4.3E-05 2.131 2.2E-04 0.960 0.711 6.797 

19 -1124.305 2.2E-04 -2.244 -2.4E-04 0.810 0.673 6.797 

20 -731.331 -4.4E-06 2.131 2.2E-04 0.970 0.711 6.797 

21 -985.861 2.1E-04 0.779 -1.7E-03 0.972 0.735 8.851 

22 -1352.199 9.3E-04 4.804 -1.6E-03 1.039 0.719 8.941 

23 -1468.406 2.1E-04 2.708 1.7E-03 0.988 0.711 8.941 

24 -667.006 -3.3E-05 2.042 1.2E-04 1.068 0.735 8.941 

25 -986.239 -1.6E-04 2.828 -1.6E-03 0.984 0.737 8.851 

26 -986.239 -1.6E-04 2.828 -1.6E-03 0.984 0.737 8.851 

 

The most comprehensive explanation about the molecular descriptors could be found in 

the Handbook of Molecular Descriptors (Todeschini and Consonni, 2000). Table 4 represents the 

correlation matrix among these descriptors. There were no statistically significant correlation 

between selected molecular descriptors; therefore, they could be used for QSRR model building. 
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Table 4. The correlation coefficient matrix for the selected descriptors by GA 

 AATSC5c AATSC1v AATSC1e GATS5p BIC2 MIC0 

ATSC3v 0.000 -0.318 -0.108 0.003 0.188 -0.051 
 p=0.999 p=0.113 p=0.599 p=0.988 p=0.359 p=0.804 

AATSC5c  -0.097 -0.251 -0.040 0.100 0.135 
  p=0.638 p=0.216 p=0.846 p=0.628 p=0.511 

AATSC1v   -0.083 -0.062 0.157 0.177 
   p=0.688 p=0.765 p=0.444 p=0.386 

AATSC1e    0.179 -0.259 -0.277 
    p=0.382 p=0.202 p=0.171 

GATS5p     0.161 -0.166 
     p=0.433 p=0.419 

BIC2      -0.334 
      p=0.096 

 

QSRR model validation 

The factor analysis was performed on the molecular descriptor data obtained from PaDel-

descriptor software, in order to eliminate the descriptors with equal or almost equal factor values. 

Only one of the correlated descriptors remained in the GA calculation. GA was used to select the 

most appropriate set of molecular descriptors which were left in the calculation, while the selection 

of the most relevant set of descriptors was used in the evolution simulation(Mohammadhosseini, 

2013; Nekoei et al., 2015). The number of elements was equal to the number of the molecular 

descriptors obtained in the PaDel-descriptor, and the population of the first generation in the GA 

calculation was selected randomly. The probability of generating zero for the element was set at 

least 60%. The operators used in the simulation were: crossover (90% probability) and mutation 

(0.5%). A population size of 100 elements was chosen for GA, and evolution was allowed for over 

50 generations. The evolution of the generations was stopped when 90% of the generations took 

the same fitness. 

The calibration and predictive capability of a QSRR model should be tested through the 

model validation. The most widely used squared correlation coefficient (r2) can provide a reliable 

indication of the fitness of the model; thus, it was employed to validate the calibration capability 

of a QSRR model.  The quality of the model fit was tested in Table 5, in which the lower reduced 

chi-square (χ2), mean bias error (MBE), root mean square error (RMSE), mean percentage error 

(MPE) are presented (Arsenović et al., 2015). 

 

Table 5.The "goodness of fit" tests for the developed ANN model 

χ2 RMSE MBE MPE 

7519.609 85.032 -36.684 3.250 

χ2 - reduced chi-square, MBE - mean bias error, RMSE - root mean square error, MPE - mean 

percentage error. 
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The predicted RIs which were presented in Figure 2 confirmed the adequate prediction of 

the retention indices, for constructed ANN, by showing the relationship between the predicted 

and experimental retention values. 

 

 
Figure 2. Comparison of experimentally obtained RIs with ANN predicted values 

 

Global sensitivity analysis- Yoon’s interpretation method 

In this section the influence of seven the most important input variables, identified using 

genetic algorithm on RI was studied. According to the Figure 3, ATSC3v was the most influential 

parameter with approximately relative importance of 18.8%, while the influence of AATSC1v, 

AATSC1e, GATS5p and AATSC5c were 14.9, 14.6%, 13.6% and 13.3%, respectively. MIC0 and 

BIC2 were influential at levels 13.2% and 11.6%, respectively. 

 

 
Figure 3 The relative importance of the molecular descriptors on RI, determined using Yoon 

interpretation method 

Conclusion  

The QSRR model for the estimation of retention times of O. vulgare subsp. 

vulgareessential oil compounds was developed for 28 compounds using the ANN modelling 

approach. The results demonstrated that the ANN model was adequate in predicting retention times 



Chemia Naissensis, Vol 3, Issue 2, RESEARCH ARTICLE, 100-112 

 
 

110 
 

of found chemicalcompounds. A suitable model with high statistical quality and low prediction 

errors was derived. 

The following five molecular descriptors were suggested by genetic algorithm: five 2D 

autocorrelation molecular descriptors (ATSC3v, AATSC1v, AATSC1e, AATSC5c and GATS5p) 

and two Information content descriptors (MIC0 and BIC2), that predicted retention times of the 

obtained compounds. Selected molecular descriptors were not mutually correlated and the 

obtained descriptors were suitable for QSRR model building. The results demonstrated that the 

ANN model was adequate to predict the RIs of the compounds in O. vulgare subsp. 

vulgareessential oil obtained by hydrodistillation and analysed by GC-MS. The coefficient of 

determination for training cycle was 0.998, which is a good indication that this model could be 

used for the prediction of retention time.  
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