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Abstract:

Background: Titanium (Ti) is widely used in medical and dental implants.
Calcium phosphate (CPs) coatings enhance Ti implants' osteoinductive
properties, and additives further improve these coatings. Recently, a nano
amorphous calcium phosphate (nACP) coating decorated with chitosane
oligolactate (ChOL) and selenium (Se) showed immunomodulatory effects. This
study investigates the surface morphology, composition, bioactivity, mechanical
properties, and Se release mechanism of the nACP/ChOL/Se hybrid coating on
Ti substrates. Amorphous calcium phosphate (ACP) was synthesized, and the
ACP/ChOL/Se hybrid coating was deposited on Ti substrates using in situ
anaphoretic deposition. Surface morphology was analyzed using SEM, AFM,
XRD, and FTIR. The distribution of Se within the coating was examined with
EDS. Bioactivity was evaluated in simulated body fluid (SBF), and adhesion
was tested using a scratch test method. In vitro testing determined the release
mechanism of Se. SEM images illustrated the surface morphology, while AFM
provided a detailed analysis of surface roughness. XRD analysis revealed
structural and phase composition, and EDS confirmed Se distribution within
the coating. The coating exhibited bioactivity in SBF and showed good
adhesion according to the scratch test. In vitro testing uncovered the release
mechanism of Se from the coating. This study successfully characterized the
surface morphology, composition, bioactivity, and Se release mechanism of the
nACP/ChOL/Se hybrid coating on Ti substrates, offering insights for developing
immunomodulatory coatings for medical and dental applications.
Keywords: deposition; hybrid coating; ion release; implants; inflammatory
mediators; nano calcium phosphate

1. Introduction

Thus far, titanium (Ti) has been widely utilized as a material for creating
diverse implants in the field of medicine and dentistry [1]. The addition of
hydroxyapatite (HAp) coatings to titanium (Ti) substrates has proven to be

22

PETI MEĐUNARODNI SIMPOZIJUM O KOROZIJI I ZAŠTITI MATERIJALA, ŽIVOTNOJ SREDINI I ZAŠTITI OD POŽARA



highly effective in enhancing the osteoinductive properties of these implants,
making them suitable for use in dentistry and medicine [2]. When jaw bone
fixation is performed using HAp-coated Ti implants, a close bond is formed
between the implant and the surrounding bone tissue, with no presence of other
tissue in the interlayer [3]. The incorporation of nanostructured hydroxyapatite
(nHAp) and similar calcium phosphates (CP) as coatings on Ti implants has
further improved their properties, facilitating the earlier formation of new bone
tissue [4]. Moreover, amorphous calcium phosphates (ACPs), which undergo a
transformation into more stable structures like HAp, have demonstrated
significant potential in the realm of reconstructive medicine [5].
In the quest to address implant-associated infections (IAIs), particularly in the
case of titanium (Ti) implants, a range of strategies has been developed to
effectively reduce IAIs [6,7]. One approach involves incorporating silver (Ag)
into hydroxyapatite (HAp) coatings, resulting in the creation of a coating with
antibacterial properties [8]. Furthermore, researchers have explored the
antibacterial effects of Ti-coated HAp doped with various elements such as
yttrium (Y), copper (Cu), and strontium (Sr) [9–11]. The presence of strontium
(Sr), magnesium (Mg), and zinc (Zn) ions in HAp-based coatings has also
demonstrated the ability to enhance their antibacterial properties [12].
In addition to ion doping in HAp, antibacterial properties can be achieved by
employing hybrid coatings composed of HAp and polymers on titanium
surfaces. Chitosan (Ch) and its derivatives, known for their excellent
biocompatibility, non-toxicity, and favorable physical and chemical properties,
possess remarkable antibacterial capabilities [13]. Micro-nanostructured
HAp/chitosan (HAp/Ch) coatings on titanium substrates have shown the ability
to inhibit the growth of various bacteria while simultaneously enhancing the
coating's bioactivity potential [14]. Moreover, multifunctional coatings
combining nano amorphous calcium phosphate (nACP) and chitosan
oligosaccharide lactate (ChOL) have exhibited notable bioactive properties
[15]. To ensure strong adhesion of nACP@ChOL coatings on titanium, a
successful approach involves employing the simultaneous technique of
anodization and anaphoretic electrodeposition [16].
Electrodeposition techniques have proven effective not only for depositing
HAp/chitosan (HAp/Ch) coatings on titanium but also for incorporating
antibiotics into these coatings [17]. Besides biocompatibility and mechanical
properties, enhancing the bioactivity of HAp- or ACP-based coatings in
conjunction with chitosan is crucial for their application in medicine and
dentistry. The addition of cellulose acetate (CA) to nHAp/Ch-based coatings
has demonstrated a significant improvement in bioactivity [18]. Additionally,
the bioactivity of HAp/Ch-based coatings has been enhanced through the
incorporation of carbon nanotubes and graphene during the electrodeposition
process [17,19].
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In addition to the previously discussed properties of nACP@ChOL and
nHAp@ChOL coatings on titanium (Ti), which are crucial for their potential
applications, the response of the body and organism after implantation
represents a property of utmost importance. Generally, the introduction of a
foreign object into the body of a mammal triggers complex biochemical
processes that may lead to inflammation, infection, and other reactions [20].
Ongoing research in the field of HAp coatings on Ti substrates aims to develop
coatings with properties that can reduce or completely inhibit the adverse
response of the organism following implantation. In addition to essential
properties such as biocompatibility, bioactivity, antibacterial properties, and
corrosion stability, the latest generation of Ti coatings is also focused on their
immunomodulatory properties. The design of biomaterials and coatings with
anti-inflammatory characteristics presents a significant challenge for
researchers today [21].
Studies have explored the incorporation of nonsteroidal anti-inflammatory
drugs (NSAIDs) as part of HAp coatings on Ti substrates, and the results have
shown no negative impact on the osseointegration of such implants while
providing anti-inflammatory effects [22,23]. Furthermore, the addition of
resveratrol to the HAp@Ch system has demonstrated simultaneous promotion
of osteo-differentiation and significant anti-inflammatory effects during in vitro
testing [24]. In our recent research, we have developed a nACP@ChOL-based
coating decorated with selenium (Se) on Ti using the anodization/anaphoretic
electrodeposition process [25]. The focus of these studies was to investigate the
immunomodulatory properties of the nACP@ChOL coatings decorated with Se
on Ti in living systems, specifically in vivo. The nACP@ChOL-Se coating has
shown an increase in the Arg1 (arginase 1) ratio and M2/M1 (M2
macrophages/M1 macrophages) following implantation in a living organism,
indicating its beneficial effect on the immune response.
The current study aims to investigate the surface morphology and specific
characteristics of the nACP@ChOL coating decorated with selenium (Se) on
titanium (Ti) substrates. During the electrodeposition process of nACP, its
transformation into nanostructured hydroxyapatite (nHAp) takes place. X-ray
structural analysis was employed to examine the coating's phases. The
distribution of Se within the coating was analyzed using the suitable technique
of Energy-Dispersive X-ray Spectroscopy (EDS). Furthermore, the potential
bioactivity of the coating was evaluated in a simulated body fluid (SBF)
environment. To assess the mechanical properties essential for potential
applications and adhesion to the substrate surface, the Scratch test method was
employed. Additionally, in vitro testing at a temperature of 37°C was conducted
to determine the release mechanism of Se into the surrounding environment
during potential applications.
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2. Materials and Methods

Amorphous calcium phosphate (ACP) was synthesized by rapidly adding 150
mL of a 26.6% mass solution of Ca(NO3)2 in double-distilled water to 400 mL
of an (NH4)3PO4 solution. The later was prepared by combining 7 mL of
H3PO4, 165 mL of NH4OH, and 228 mL of double-distilled H2O. The resulting
solution was continuously stirred at 100 rpm and 50°C for 60 minutes. The
obtained fine gel was aged for 15 seconds before being collected, rinsed with
water, and centrifuged at 4000 rpm in a Hettich Universal 320 centrifuge at 5°C
for 1 hour. The resulting precipitate was freeze-dried at -30°C and a pressure of
0.37 bar for 1 hour, followed by a final drying step at -40°C and a pressure of
0.12 bar for 2 hours.
For the in situ anaphoretic deposition processes of ACP/ChOL/Se hybrid
multifunctional composite coatings on Ti substrates, 99.7% pure titanium plates
(ThermoFisher) with dimensions of (20 × 10 × 0.89) mm were utilized. The
titanium plates underwent precoating preparation which included sanding with
silicon carbide (SiC) sandpaper with grit sizes of 600, 1000, 2000, and 3000,
followed by polishing using alumina with grain sizes of 1, 0.3, and 0.05 µm
(Buehler, IL, USA). Subsequently, all samples were washed and purified in
96% ethanol (Sigma Aldrich, Taufkirchen, Germany) using an ASONIC PRO
50 ultrasonic cleaner (ASonic, Ljubljana, Slovenia) with a power of 120 W and
a frequency of 40 kHz for 30 minutes. To prevent spontaneous oxidation, the
samples were stored in ethanol prior to deposition.
The ACP/ChOL/Se hybrid coatings on Ti substrates were obtained through in
situ anaphoretic precipitation from an appropriate ethanolic suspension. To
prepare the suspension, 273.5 mg of Na2SeO3 (equivalent to a total of 125 mg
Se, Sigma Aldrich, Taufkirchen, Germany) was added to 50 mL of double-
distilled water and stirred for 5 minutes until completely dissolved. Next, 125
mg of chitosan oligosaccharide lactate (ChOL, Mw 5000, Sigma Aldrich,
Taufkirchen, Germany) was added to the same solution, and the mixture was
continuously stirred at 300 rpm overnight using a rotary magnetic stirrer. The
total amount of selenium (125 mg) and a ChOL:Se mass ratio of 1:1 were
selected as being continuation of the previous research [25]. After the ChOL
had swelled and dissolved overnight, 50 mL of 96% ethanol and 1.000 g of
ACP were added to the solution, followed by stirring at 300 rpm for another
overnight. The pH was adjusted using 5 mL of 1 M NaOH to enhance the
suspension's stability for subsequent anodization/anaphoretic deposition. The
suspension was continuously mixed on a rotary magnetic stirrer at 300 rpm to
ensure particle homogenization and maintain a stable suspension throughout the
deposition process. The in situ anaphoretic deposition was performed using a
custom-made two-electrode electrochemical cell, with the titanium plate (20 ×
10 × 0.89) mm serving as the anode and a pair of 316 grade stainless steel
plates (20 × 10 × 0.89) mm as the cathode, placed parallel to the anode at a
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distance of 10 mm. The ACP/ChOL/Se hybrid coatings on titanium were
deposited at a constant voltage of 60 V for 1 minute, followed by air-drying for
24 hours at 25°C.
The surface morphology of the hybrid coatings was analyzed using field-
emission scanning electron microscopy (Tescan Mira 3 XMU FEG-SEM). EDS
analysis was conducted using a Jeol JSM 5800 SEM with a SiLi X-ray detector
(Oxford Link Isis series 300, Abingdon, UK). The composite samples were
subjected to X-ray diffraction (XRD) analysis for structural and phase
evaluation. The measurements were carried out using a Philips PW 1050
powder diffractometer (Malvern Panalytical Ltd, Malvern, UK) at room
temperature. Ni-filtered Cu Kα radiation (λ = 1.54178 Å) and a scintillation
detector were used within the 2θ range of 3–82° with a scanning step size of
0.02°. The scanning rate was set at 5 seconds per step. Phase analyses were
conducted using EVA V.9.0 software. To assess the adhesion of the coatings, the
ASTM D 3359-02 Standard Test Methods for Measuring Adhesion by Tape,
cross-cut tape test (B), was performed. The adhesion measurements were
recorded using a camera equipped with a Leica 20 MP Ultra Wide Angle Lens
and an aperture of f/2.2.
The surface characteristics of the polymer composites were analyzed using a
contact mode atomic force microscope (AFM) "Nanoscope III" AFM Multi
Mode Scanning Probe Microscope manufactured by "Digital Instruments"
(Munich, Germany). The obtained microscopy data were processed using the
NanoScope Analysis software.
The concentration of selenium (total, in all oxidation states present in the
coating and released to SBF solution) was measured using the inductively
coupled plasma optical emission spectrometry (ICP-OES) analytical technique.
ICP-OES measurements were performed on an iCAP 6500 Duo ICP instrument
(Thermo Fisher Scientific, Cambridge, UK) with iTEVA operating software.
The samples were introduced into the plasma by direct liquid aspiration.
Calibration standard solutions in the appropriate concentration range (1-50000
µg/L) were prepared from a certified standard solution: Selenium, plasma
standard solution, Specpure®, Se 1000 µg/ml (Alfa Aesar GmbH & Co KG,
Germany). The correlation coefficient for selenium was >0.99. Selenium
quantification was performed at the emission wavelength of Se I 196.090 nm.
The concentration measurements were repeated three times (n=3). The relative
standard deviation of the repeated measurements was RSD < 0.5%. For
determination of total Se content in the hybrid coating, the coating was
dissolved in aqua regia (HCl + HNO3, 3:1 v/v) by boiling. The titanium plate
remained intact and undissolved. After complete dissolution of the entire
coating, the solution was quantitatively transferred to a volumetric flask with a
capacity of 25 mL and diluted to the marked volume. The concentration of
selenium in the resulting solution was measured using the ICP-OES analytical
technique.
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Michelson MB Series Bomen Fourier transform infrared spectroscope (FTIR)
spectroscope (Hartmann Braun, Munich, Germany) was used to conduct FTIR
analysis. The FTIR measurements were carried out in the wavenumber range of
400 to 4000 cm−1 with a spectral resolution of 0.5 cm−1.

3. Results

3.1. Hybrid ACP/ChOL/Se coating characterization

To characterize the physical appearance and surface area of the synthesized
hybrid ACP/ChOL/Se coatings on titanium substrates, SEM imaging was
employed. Figure 1 depicts the ACP/ChOL/Se hybrid coating prepared by in
situ anodization/anaphoretic deposition process, which was performed for 1
minute, which is the same as in our previous research [25].

Figure 1. SEM images of ACP/ChOL/Se hybrid coating on titanium substrate
deposited by in situ anodization/anaphoretic deposition process at 60 V of the

hybrid coating.
Figure 2 shows two -dimensional AFM pictures with surface morphology and
linear roughness analysis of the ACP/ChOL/Se hybrid coating surface.
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Figure 2. (A) Two-dimensional AFM image of the ACP/ChOL/Se hybrid coating
surface and (B) linear roughness analysis (root mean square - RMS) of the same

coating

The EDS area analysis results, presented in Figure 3 through EDS mapping,
provided confirmation of the presence of building constituents, namely titanium
(Ti), oxygen (O), calcium (Ca), phosphorus (P) and selenium (Se), in the
ACP/ChOL/Se hybrid coating on titanium substrate.
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Figure 3. EDS mapping of ACP/ChOL/Se hybrid coating on titanium substrate with all
ions distribution and distribution of titanium (Ti), oxygen (O), selenium (Se), calcium

(Ca) and phosphorus (P).

Figure 4 displays the XRD diffraction pattern of ACP/ChOL/Se hybrid coating
on the titanium substrate.

Figure 4. XRD diffractogram of ACP/ChOL/Se hybrid coating on titanium substrate
deposited by in situ anodization/anaphoretic deposition process at 60 V after 1 min of

deposition with enlarged portion of the spectrum from 2Θ=32° to 40°.
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The optical images of the ACP/ChOL/Se hybrid coating on titanium substrate
before and after performing adhesion testing, quantified by adhesion test
according to ASTM D 3359-02: Standard Test Methods for Measuring
Adhesion by Tape; cross-cut tape test (B), are shown in Figure 5.

Figure 5. Optical image of the ACP/ChOL/Se hybrid coating on titanium substrate
obtained at 60 V (A) before and (B) after performing adhesion testing according to

ASTM D 3359-02.

3.2. Bioactivity

To evaluate the bioactivity of the composite coatings, the ACP/ChOL/Se hybrid
coatings on titanium substrate were subjected to immersion in SBF solution and
analyzed at different time intervals. The surface morphologies of the hybrid
composites after immersion in the SBF solution are presented in Figure 6
(namely, Figure 6A and 6B after 3 days of immersion and Figures 6C and 6D
after 10 days of immersion).
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Figure 6. (A) and (B) SEM micrographs of the ACP/ChOL/Se hybrid coatings on a
titanium substrate after immersion in the SBF solution for 3 days. (C) and (D) SEM

micrographs of the coatings after 10 days of immersion in the SBF solution.

Figure 7 shows the EDS mapping analysis results of the ACP/ChOL/Se hybrid
coatings after immersion in SBF for 10 days.
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Figure 7. EDS mapping of ACP/ChOL/Se hybrid coating on titanium substrate with all
ions distribution and distribution of titanium (Ti), oxygen (O), selenium (Se), calcium

(Ca), phosphorus (P), Sodium (Na), magnesium (Mg), potassium (K) and chloride (Cl).

The FTIR spectra of the ACP/ChOL/Se hybrid coatings before and after 10
days immersion in SBF are presented in Figure 8. The changes in the peaks’
intensities, as well as appearances or disappearances of the peaks are labeled
with numbers, which is discussed in the Discussion section.
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Figure 8. FTIR spectra of ACP/ChOL/Se hybrid coatings on titanium substrate before
and after 10 days immersion in SBF.

3.3. Ion release study

The results of our previous research [25] have unequivocally confirmed that the
ACP/ChOL/Se multifunctional hybrid composite coating on a titanium
substrate has the immunomodulatory and anti-inflammatory effect compared to
the pure grade 2 titanium implants. However, it was of the utmost importance to
investigate the Se-release mechanism in vitro. The results of the investigation of
selenium release in SBF medium is shown in Figure 9.

Figure 9. (A) Cumulative curve of the release of selenium in SBF medium at 37°C over
the investigated time period and (B) release of selenium in percents over the

investigated period: relative review
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3.4. In vivo study

To examine the effect of novel coating on biocompatibility, we did not use the
traditional approach (histological examination) but decided to examine
functional aspects in the tissue around the implant that might give better insight
into the presence of inflammation (proinflammatory cytokines’ gene
expression), M1 macrophages (iNOS), M2 macrophages (Arg1), fibrous
capsule formation (TGF-β) and vascularization (VEGF).
ACP/ChOL/Se coating of titanium implants does not affect the general physical
condition of animals, and there was no evidence of redness, swelling, or
infection around implanted disks. Examination of macrophage functional
polarization showed a similar presence of M1 macrophages (iNOS expression)
(Figure 10A) at earlier time points, but lower at day 28 post-implantation in the
tissue around ACP/ChOL/Se implants. Additionally, a higher level of M2
polarization (Arg1 expression) (Figure 10B) was noted at all time points
examined, resulting in a higher M2/M1 macrophage ratio (Figure 10C) in
ACP/ChOL/Se coated implants compared to pure titanium implants. Lower
inflammation measured by gene expression of proinflammatory cytokines IL-1β
(Figure 10D) and TNF (Figure 10E) was noted in presence of ACP/ChOL/Se
implants at all time points examined. In contrast to IL-1β and TNF, a transiently
higher IL-6 expression (solely at day 7 post-implantation) (Figure 10F) was
observed in ACP/ChOL/Se implants. The tissue surrounding ACP/ChOL/Se
implants was characterized by a lower expression of TGF-β (Figure 10G) at all
time points post-implantation, while no differences were detected in VEGF
expression (Figure 10H).
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Figure 10. Gene expression in tissue surrounding pure titanium or ACP/ChOL/Se
coated titanium disks following subcutaneous implantation in rats evaluated by RT-
PCR analysis. (A) mRNA expression of M1 macrophage marker iNOS. (B). mRNA

expression of M2 macrophage marker Arg1. (C) M2/M1 ratio calculated as
Arg1/iNOS. mRNA expression of IL-1β (D), TNF (E), IL-6 (F), TGF-β (G) and VEGF
(H). Data are presented as mean ± standard deviation from 8 animals per group per

time point. Statistically significant differences at: * p < 0.05, ** p < 0.01 and *** p <
0.001 for ACP/ChOL/Se coated titanium vs pure titanium disks.

4. Discussion

From the Figure 1 it can be observed that the deposited coating has a rose
flower-like structure, which is attributed to the in situ process mechanism, as
already explained in our previous research [25]. Due to the potentiostatic
conditions during deposition and presence of more conductive species in the
suspension used for deposition of ACP/ChOL/Se hybrid coatings, higher values
of current densities are obtained, being up to 30 mA/cm2. As explained, the
hydrogen gas evolution results in the formation of pits, holes, and vacancies,
creating the rose flower-like structure which can be observed in Figure 1.
Nevertheless, the hybrid coating is completely covering the substrate and this
coating consists of agglomerated nanoparticles. In previous research [25], it was
shown that macroscale RMS value was 2.153 µm. AFM presentation of the
surface morphology of the ACP/ChOL/Se hybrid coating, shown in Figure 2A
proves the former statement. As it can be seen in Figure 2A, the investigated
surface (scan area 1×1 µm) is relatively smooth. The linear roughness profile,
presented in Figure 2B, shows root mean square roughness (RMS) value of
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0.364 nm and surface roughness of 13.8 nm. This is the proof that coating
condenses and agglomerates, and that the starting particles are smaller than 100
nm, which was already indicated in previous researches [15,16]. The presence
of these agglomerates contributes to the formation of a rough surface, which is
crucial for promoting beneficial osteoconductivity.
The homogeneity of the deposited hybrid coating's structure can be observed
from EDS measurements presented in Figure 3. All the constituents, namely
amorphous calcium phosphate (ACP) represented by calcium (Ca) and
phosphorus (P) and selenium additive (Se), are evenly distributed across the
titanium (Ti) substrate. Oxygen (O) presence is due to the polymer, oxidized
titanium in the form of titanium dioxide, and the selenium salt used with the
process of anodization/anaphoretic deposition process.
The XRD pattern of the ACP/ChOL/Se hybrid coating is presented in Figure 4.
The XRD analysis indicates that hybrid coating exhibits characteristic wide
amorphous reflection peak with maximum around 2θ=30°, suggesting that the
main component of the coatings is ACP. Additionally, XRD pattern of
ACP/ChOL/Se hybrid coating shows distinct diffraction peaks at 2θ=25.85° and
31.6° which correspond to (002) and (211) reflections of the HAp crystal lattice
(JCPDS standard XRD card No. 86–1199). Furthermore, small peat at 2θ=46.6°
and 49.6° correspond to (222) and (213) reflections of the HAp crystal lattice
(JCPDS standard XRD card No. 86–1199). Reflection peak at 2θ=29.3°, as well
as diffraction peaks at 2θ=35.8° and 37.4° from the enlarged section of the
XRD diffractogram correspond to (213), (303) and (411) reflections of the body
centered tetragonal crystal lattice of sodium selenide (JCPDS standard XRD
card No. 86-1846). Due to smaller quantity of the used precursors, the former
peak intensities are smaller. The XRD results confirm the transformation of
amorphous ACP to crystalline HAp, ant that single-step in situ electrophoretic
deposition occurs, with depositing all the species from the starting precursor
solution.
The adhesion of composite coatings plays a crucial role in determining the
potential biomedical applications of any composite material in the future. In
order to evaluate the adhesion of ACP/ChOL/Se hybrid coatings on Ti substrate,
a comprehensive adhesion test was conducted according to ASTM D 3359-02
Standard Test Methods for Measuring Adhesion by Tape, cross-cut tape test (B),
given its significance for the potential medical applications of this composite
material. Figure 5 shows the optical images of the ACP/ChOL/Se hybrid
coating on titanium substrate after performing the adhesion test. After
conducting a thorough assessment of the adhesion of the hybrid composite
coating according to the ASTM D3359-02 standard, the adhesion level was
determined to be 5, on a scale where 5 represents the highest adhesion (no
delamination or flaking) and 0 represents the lowest adhesion (more than 65%
of the coating delaminated). There is no influence of ion loading on adhesion of

36

PETI MEĐUNARODNI SIMPOZIJUM O KOROZIJI I ZAŠTITI MATERIJALA, ŽIVOTNOJ SREDINI I ZAŠTITI OD POŽARA



the hybrid coating, since the adhesion is not affected when compared to our
previous work [16].
The in vitro bioactivity of a substrate refers to its ability to form an apatite layer
when exposed to biologically similar fluids. To evaluate the bioactivity of
ACP/ChOL/Se hybrid coatings on titanium substrate, they were immersed in
SBF solution for up to 10 days and analyzed at different time intervals. The
SEM results from Figure 6 clearly demonstrate the bioactivity of ACP/ChOL/Se
hybrid coating following immersion in SBF. A complete coverage of the sample
surface by a new apatite layer is evident. As it can be seen in Figure 6A and 6B
(Figure 6B being enlarged part of Figure 6A), even after 3 days new HAp-like
layer is formed in the form of granulated agglomerates with particle sizes of
few tens to 50 nm in diameter. After 10 days (Figure 6C and its enlarged part
Figure 6D), it can be seen that the surface of the hybrid composite is completely
covered with the newly formed apatite layer, and there is continuation of apatite
growth in the form of spread across the composite surface, with continued
growth of apatite in the form of granulated globular agglomerates. The
formation of HAp from SBF serves as preliminary evidence for the composite-
coated Ti's potential for in vivo bone bonding capability. The bone-like HAp
layer formed on the implant surface after immersion in SBF is believed to
support cell cascading and protein signaling, leading to the formation of new
bone tissue [26]. It has been observed that this bone-like HAp layer possesses
excellent osteoconductivity and exhibits a strong affinity for living bone cells
[27]. Moreover, it facilitates the proliferation of osteoblast cells, promoting the
generation of new bone tissue. Therefore, the development of an HAp layer
along the implant material's surface is a crucial requirement for the successful
osseointegration between the implant and the surrounding living bone tissue.
EDS mapping analysis results of the hybrid composites after 10 days of
immersion in SBF, shown in Figure 7, confirm the bioactivity of the tested
samples. Besides all the constituents (calcium (Ca), phosphorus (P), oxygen
(O), selenium (Se) and titanium (Ti)), the presence of sodium (Na), magnesium
(Mg), potassium (K) and chloride (Cl) was observed. Besides Ca, P and O, the
later were incorporated in the top layer during immersion of samples in SBF,
which is one of the proofs for bioactivity.
FTIR examination was performed on the hybrid samples before and after 10
days of immersion in SBF, and the results are shown in Figure 8. As the new
apatite layer is formed, there are some changes in the bands and intensities.
Since the apatite layer is grown on top, there is flattening of the weak
adsorption band at around 2923 cm−1 which is attributed to –C-H backbone
vibrations of ChOL polymer (labeled number 1 in Figure 8). Also there is
enlargement and differentiation of characteristic absorption band and peak at
1633 cm−1 that is attributed to the OH– of absorbed water (labeled number 2 in
Figure 8) and bands that correspond to PO4

3− group from ACP with
distinguishable peak at 1019 cm−1 and two shoulders at 960 cm−1 and 1195 cm−1

37

PETI MEĐUNARODNI SIMPOZIJUM O KOROZIJI I ZAŠTITI MATERIJALA, ŽIVOTNOJ SREDINI I ZAŠTITI OD POŽARA



(labeled number 3. in Figure 8). Besides the HAp layer formation on top of the
ACP/ChOL/Se hybrid coating during immersion in SBF, there is release of
selenium ions to the medium. Hence the quantity of selenium is lowered.
Therefore, the bands that correspond to sodium selenite is diminishing, which
can be seen in Figure 8 as label 4. The FTIR results undoubtedly confirm the
bioactivity of ACP/ChOL/Se hybrid coating on titanium substrate.
During a 28-day timeframe, the hybrid composite system underwent an
observation of selenium release. Figure 9 depicts the dynamics of selenium
release in a simulated body fluid (SBF) solution at 37°C under static conditions.
The commonly used Peppas model [28] was employed to determine the release
parameters by fitting the curve depicted in Figure 9A.

Mt/M∞ = ktn, (1)
The Peppas model, represented by Equation 1, was utilized to mathematically
describe the kinetics of drug delivery. In this equation, Mt/M∞(%) represents the
cumulative release proportionate to the release constants k (h−1) the diffusional
exponent n which characterizes the release mechanism [28]. The Peppas model
belongs to the category of empirical or semi-empirical mathematical models
[29] that are employed to calculate the diffusional exponent n, indicating the
transport mechanism.
The fitting results indicate that the release mechanism of selenium from the
investigated nanocomposite biomaterials under static conditions conforms to an
anomalous transport mechanism. This type of release mechanism, referred to in
literature as non-Fickian transport, is observed. Notably, an increase in selenium
content tends to shift the release mechanism towards Fickian diffusion. Non-
Fickian transport is typically observed when a drug is released from thin
polymer layers [30, 31]. The dominant phenomenon in cases of non-Fickian
transport is the presence of high elastic stress in the polymer, associated with a
nonlinear relaxation time [32].
Figure 9B illustrates the progression of selenium release over the course of 28
days. Following the first day (Figure 9B), the highest release rate occurs
between the first and seventh day (15.8%), followed by the period between 7
and 14 days (9.5%), and finally between days 14 and 28 (8.7%). The initial
higher release rate is likely attributed to the substantial amount of selenium
present in the starting composite due to the synthesis procedure. Accelerated
release can be observed in all systems during the first 10 days, during which
78% of the total selenium amount is released in the system.
Macrophages have an important role in the immune response to implants [33]
and the presence of these cells in the tissue surrounding implants has been
examined by histology or immunohistochemistry [34-38]. ACP/ChOL/Se
implant has no effect on M1 cells (measured by expression of the signature
molecule for these cells) at earlier time points post-implantation, which might
be beneficial as inflammation in early stages is important for the prevention of
infection.
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However, at later time points ACP/ChOL/Se implant decreased the number of
inflammatory cells suggesting better control of inflammation. Increased
expression of Arg1 indicates that ACP/ChOL/Se coating results in a higher
differentiation of macrophages toward the M2 phenotype which is involved in
tissue repair. A higher number of M2 macrophages and increased M2/M1 ratio
has been documented for some implanted materials [34,35] and attempts exist
to modulate macrophage response to implant materials toward M2 phenotype
[38]. In this context, a higher number of M2 cells and M2/M1 ratio might
indicate that ACP/ChOL/Se coating has a beneficial effect on the immune
response at the host implant interface. A lower expression of IL-1β and TNF
around ACP/ChOL/Se implants indicates that selenium, although has no effect
on M1 cell numbers, decreases the activity of these cells. Both IL-1β and TNF
are produced by M1 macrophages [33] and are increased in response to various
implanted materials [39] or titanium particles [40]. As these cytokines can
activate osteoclastogenesis leading to osteolysis [40], lower levels of IL-1β and
TNF induced by ACP/ChOL/Se coating might be beneficial for implant
integration. In contrast to decreased IL-1β and TNF response to ACP/ChOL/Se
coated disks, a transient higher IL-6 response was noted in the presence of
selenium. Although decreased osteolysis was noted following prolonged (4
weeks) neutralization of IL-6 in animals [40], early and transient production
might be beneficial for tissue regeneration as this cytokine is a key modulator
of the inflammatory and reparative processes [41]. A lower expression of TGF-
β in the tissue around ACP/ChOL/Se implants suggests reduced fibrous capsule
formation in comparison to pure titanium, as a positive correlation between
TGF-β and fibrosis progression has been documented [42]. Additionally, the
lower expression of TGF-β might contribute to a better implantation/higher
stability of ACP/ChOL/Se coated titanium into the tissue. Supporting this
assumption are data showing a lower expression of this factor in the stromal
cells, epithelial layers, and in vascular component in mucosa around healthy
dental implants compared to failing implants [43]. Formation of novel blood
vessels is also important for tissue integration of medical devices, but
neovascularization has been sporadically documented in papers examining the
biocompatibility of tissue implants [34–36]. VEGF is a factor involved in the
regulation of angiogenesis during tissue healing, and data showing failing of
dental implants in the patient under the treatment with the VEGF inhibitor [44],
as well as a lower expression of this molecule in mucosa around failing
implants compared to healthy implants [45], indicate an important role of
VEGF in process of tissue integration. Beneficial effects of VEGF have been
shown in an animal model where a higher number of endothelial cells and
osteoblasts around VEGF-coated implant (compared to control implants) were
noted [46]. Results we obtained indicate that ACP/ChOL/Se coating does not
affect vascularization as a similar expression of VEGF was noted in the tissue
around both ACP/ChOL/Se coated and pure titanium disks.
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Altogether, lower inflammation and fibrosis with higher M2/M1 macrophage
ratio and similar vascularization indicate that ACP/ChOL/Se coating improves
implant performances and might contribute to higher stability of titanium
implants.

5. Conclusions

The ACP/ChOL/Se hybrid coatings deposited on titanium substrate exhibited a
rose flower-like structure, which is attributed to the in situ process mechanism.
The deposition process under potentiostatic conditions and the presence of more
conductive species in the suspension resulted in higher current densities during
coating deposition. The hydrogen gas evolution caused the formation of pits,
holes, and vacancies, creating the distinctive rose flower-like structure.
However, despite the surface morphology, the hybrid coating completely
covered the substrate and consisted of agglomerated nanoparticles, as
confirmed by AFM analysis.
The EDS measurements demonstrated the homogeneity of the hybrid coating's
structure, with all the constituents (amorphous calcium phosphate and selenium
additive) evenly distributed across the titanium substrate. The XRD analysis
revealed that the hybrid coating primarily consisted of amorphous calcium
phosphate (ACP), with characteristic peaks corresponding to the hydroxyapatite
(HAp) crystal lattice. The presence of HAp indicated the transformation of ACP
to crystalline HAp during the single-step in situ electrophoretic deposition
process.
The adhesion of the ACP/ChOL/Se hybrid coatings on the titanium substrate
was evaluated using a tape adhesion test, which confirmed excellent adhesion
with a rating of 5 on the adhesion scale. The ion loading did not significantly
affect the adhesion of the hybrid coating. Furthermore, the immersion of the
hybrid coatings in simulated body fluid (SBF) demonstrated their bioactivity, as
evidenced by the formation of a new apatite layer on the coating surface. The
SEM analysis showed the gradual growth of the apatite layer over time,
indicating its potential for promoting osseointegration and bone bonding.
EDS mapping analysis confirmed the bioactivity of the samples, with additional
elements such as sodium, magnesium, potassium, and chloride being
incorporated into the top layer during immersion in SBF. The FTIR examination
revealed changes in the absorption bands and intensities, indicating the
formation of the apatite layer and the release of selenium ions to the medium.
The release dynamics of selenium from the investigated nanocomposite
biomaterials were evaluated. The fitting of the release data to the Peppas model
indicated an anomalous transport mechanism, characteristic of non-Fickian
transport, where the release behavior deviates from traditional diffusion. The
increase in selenium content led to a transition towards Fickian diffusion. The
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release profiles showed an initial higher release rate, which gradually decreased
over time.
ACP/ChOL/Se implant has no effect on M1 cells (macrophages) at earlier time
points post-implantation, which might be beneficial as inflammation in early
stages is important for the prevention of infection. At the same time, it was
found to be increased Arg1 and M2/M1 ratio expression which might indicate
that coating has a beneficial effect on the immune response at the host implant
interface. A lower inflammatory mediators (IL-1β and TNF) expression around
ACP/ChOL/Se implants indicates that selenium might be beneficial for implant
integration. A transient higher IL-6 response (key modulator of the
inflammatory and reparative processes) was noted in the presence of selenium,
and early and transient production might be beneficial for tissue regeneration. A
lower expression of TGF-β in the tissue around ACP/ChOL/Se implants
suggests reduced fibrous capsule formation in comparison to pure titanium.
Hence, the lower expression of transforming growth factor (TGF-β) might
contribute to a better implantation/higher stability of ACP/ChOL/Se coated
titanium into the tissue. Obtained results indicate that ACP/ChOL/Se coating
does not affect vascularization. Lower inflammation and fibrosis with higher
M2/M1 macrophage ratio and similar vascularization indicate that
ACP/ChOL/Se coating improves implant performances and might contribute to
higher stability of titanium implants.
Overall, the ACP/ChOL/Se hybrid coatings exhibited favorable characteristics
for potential biomedical applications. Their excellent adhesion, bioactivity, and
controlled release behavior make them promising candidates for orthopedic
implants and other medical devices. Further studies are warranted to assess their
long-term stability, cytocompatibility, and corrosion performance.
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