UNIVERSITY OF EAST SARAJEVO

FACULTY OF TECHNOLOGY ZVORNIK

INTERNATIONAL CONGRESS

ENGINEERING, ENVIRONMENT AND MATERIALS IN PROCESS INDUSTRY EEM2023

PROCEEDINGS

ATA	
	1
A Contraction	

JAHORINA MARCH 20-23, 2023

REPUBLIC OF SRPSKA BOSNIA AND HERZEGOVINA

www.tfzv.ues.rs.ba www.eem.tfzv.ues.rs.ba

CO-ORGANIZED BY

FACULTY OF TECHNOLOGY AND METALLURGY Belgrade, Serbia INSTITUTE OF PHYSICS Belgrade, Serbia UNION OF ENGINEERS AND TECHNICIANS OF SERBIA Belgrade, Serbia FACULTY OF TECHNOLOGY Banja Luka, Bosnia and Herzegovina FACULTY OF FOOD TECHNOLOGY Osijek, Croatia

UNIVERSITY OF EAST SARAJEVO FACULTY OF TECHNOLOGY ZVORNIK

PROCEEDINGS

VIII INTERNATIONAL CONGRESS

ENGINEERING, ENVIRONMENT AND MATERIALS IN PROCESS INDUSTRY

EEM2023

UNDER THE AUSPICES OF

MINISTRY OF ECONOMY AND ENTREPRENEURSHIP OF THE REPUBLIC OF SRPSKA

AND

ACADEMY OF SCIENCES AND ARTS OF THE REPUBLIC OF SRPSKA

JAHORINA, MARCH 20-23, 2023 REPUBLIC OF SRPSKA BOSNIA AND HERZEGOVINA PUBLISHER UNIVERSITY OF EAST SARAJEVO FACULTY OF TECHNOLOGY Karakaj 34a, 75 400 Zvornik Republic of Srpska, B&H Phone: +387 56 260 190 e-mail: <u>sekretar@tfzv.ues.rs.ba</u> web:https://eem.tfzv.ues.rs.ba/

FOR PUBLISHER

Dragan Vujadinović, PhD, dean

ORGANIZING COMMITTEE

Dragan Vujadinović, PhD, chairman | Mirjana Beribaka, PhD, secretary | Vesna Cvijetinović, MA, secretary | Slavko Smiljanić, PhD | Svetlana Pelemiš, PhD | Dragica Lazić, PhD | Vladan Mićić, PhD | Dragan Tošković, PhD | Ljubica Vasiljević, PhD | Milenko Smiljanić, PhD | Vaso Novaković, PhD | Zoran Obrenović, PhD | Radislav Filipović, PhD | Novo Škrebić, BSc | Zoran Petković, MSc | Milan Vukić, PhD | Vesna Gojković Cvjetković, PhD | Srđan Vuković, MSc | Danijela Rajić, MSc | Jelena Vulinović, MSc | Nebojša Vasiljević, MSc | Duško Kostić, MSc |

SCIENTIFIC AND PROGRAMME COMMITTEE

Muhammed Ernur Akiner, PhD, Turkey | Safia Akram, PhD, Pakistan | Sanja Armaković, PhD, Serbia | Stevan Armaković, PhD, Serbia | Goran Anačkov, PhD, Serbia | Jurislav Babić, PhD, Croatia | Milica Balaban, PhD, Bosnia and Herzegovina | Branko Bugarski, PhD, Serbia | Dragica Chamovska, PhD, North Macedonia | Rui Costa, PhD, Portugal | Victoria Custodis, PhD, Switzerland | Vesna Gojković Cvjetković, PhD, Bosnia and Herzegovina | George Dedoussis, PhD, Greece | Aleksandar Došić, PhD, Bosnia and Herzegovina | Mikhail A. Egorov, PhD, Russia | Radislav Filipović, PhD, Bosnia and Herzegovina | Ilse Fraeye, PhD, Belgium | Matteo Gherardi, PhD, Italy | Miladin Gligorić, PhD, Bosnia and Herzegovina | Regina Fuchs-Godec, PhD, Slovenia | Dragana Grujić, PhD, Bosnia and Herzegovina | Aleksandra Jovanović, PhD, Serbia | Murat Kaya, PhD, Turkey | Dragana Kešelj, PhD, Bosnia and Herzegovina | Birol Kılıç, PhD, Turkey | Gülden Başyiğit Kılıç, PhD, Turkey | Časlav Lačnjevac, PhD, Serbia | Dragica Lazić, PhD, Bosnia and Herzegovina | Borislav Malinović, PhD, Bosnia and Herzegovina | Vladan Mićić, PhD, Bosnia and Herzegovina | Marija Mitrović, PhD, Bosnia and Herzegovina | Ali Reza Nejadmohammd Namaghi, PhD, Iran | Vaso Novaković, PhD, Bosnia and Herzegovina | Zoran Obrenović, PhD, Bosnia and Herzegovina | Božana Odžaković, PhD, Bosnia and Herzegovina | Miomir Pavlović, PhD, Bosnia and Herzegovina | Darja Pečar, PhD, Slovenia | Svetlana Pelemiš, PhD, Bosnia and Herzegovina | Eva Pellicer, PhD, Spain | Mitar Perušić, PhD, Bosnia and Herzegovina | Zoran Petrović, PhD, Bosnia and Herzegovina | Nevena Puač, PhD, Serbia | Snežana Radulović, PhD, Serbia | Ivan Ristić, PhD, Serbia | Andrei Rotaru, PhD, Romania | Anastasia Semenova, PhD, Russia | Milenko Smiljanić, PhD, Bosnia and Herzegovina | Slavko Smiljanić, PhD, Bosnia and Herzegovina | Jordi Sort, PhD, Spain | Ana Stojanovic, PhD, Switzerland | Srećko Stopić, PhD, Germany | Nikola Škoro, PhD, Serbia | Goran Tadić, PhD, Bosnia and Herzegovina | Renjith Thomas, PhD, India | Igor Tomašević, PhD, Serbia | Milorad Tomić, PhD, Bosnia and Herzegovina | Vladimir Tomović, PhD, Serbia | Dragan Tošković, PhD, Bosnia and Herzegovina | Petar Uskoković, PhD, Serbia | Ljubica Vasiljević, PhD, Bosnia and Herzegovina | Đenđi Vaštag, PhD, Serbia | Dragan Vujadinović, PhD, Bosnia and Herzegovina | Milan Vukić, PhD, Bosnia and Herzegovina | Darko Vuksanović, PhD, Montenegro | Magdalena Parlinska-Wojtan, PhD, Poland | Rafael Zambelli, PhD, Brazil | Sanja Oručević-Žuljević, PhD, Bosnia and Herzegovina

EDITORIAL BOARD Dragan Vujadinović, PhD Mirjana Beribaka, PhD

TECHNICAL EDITORS Srđan Vuković, MSc Danijela Rajić, MSc

PROOFREADER

Vesna Cvijetinović, MA

DOMAIN

ENGINEERING, ENVIRONMENT AND MATERIALS IN PROCESS INDUSTRY

PUBLISHED: 2023

ISBN: 978-99955-81-45-9

The authors have full responsibility for the originality and content of their own papers.

UNDER THE AUSPICES OF

Ministry of Economy and Entrepreneurship of the Republic of Srpska

Academy of Sciences and Arts of the Republic of Srpska

SUPPORTING PUBLICATIONS

<u>Hemijska industrija</u>

Materials Protection

<u>Special Issue / Conventional and</u> <u>Emerging Extraction Techniques</u> <u>for Compounds from Natural</u> <u>Source and Food</u>

an Open Access Journal by MDPI	4.927 Indexed In:
Conventional Techniques for Sour	and Emerging Extraction Compounds from Natural ce and Food
Guest Editor Prof. Dr. Branimir Pavlic	
Deadline 31 August 2023	Specialsue
mdpi.com/si/102579	Invitation to submi

<u>Special Issue / Modeling Adsorption</u> <u>Properties of Molecular and</u> <u>Nanostructured Systems for</u> <u>Environmental Applications</u>

CHEMISTRY

CHE-01	ANTIBACTERIAL ACTIVITY OF ALLIUM SATIVUM AND ALLIUM URSINUM ON SELECTED FOODBORNE PATHOGENS Vesna Kalaba, Tanja Ilić, Dragana Kalaba, Dragan Knežević, Dragica Đurđević- Milošević	26
CHE-02	ISOLATION OF COAGULASE-NEGATIVE STAPHYLOCOCCUS FROM SAMPLES OF RAW MILK AND THEIR RESISTANCE TO ANTIMICROBIAL DRUGS	35
	Vesna Kalaba, Tanja Ilić, Dragana Kalaba, Dragica Đurđević-Milošević	
	DETERMINATION OF GLIADIN AND GLUTENIN PROTEINS FROM	
CHE-03	BISCUIT BY RP-HPLC AND FIIR METHOD AFTER TREATMENT WITH	40
	Vesna Goiković Cvietković Želika Marianović Balaban, Badoslav Gruijć, Danijela	42
	Rajić, Dragan Vujadinović, Milan Vukić	

ENGINEERING AND TECHNOLOGY

	EXTRACTION OF PECTIN FROM SUGAR BEET WASTE AND	
ENG-01	DETERMINATION OF ITS FUNCTIONAL PROPERTIES	54
	Nataša Nastić, Fatmanur Demirbaş, Enes Dertli, Senka Vidović	
	VIEW OF INTERACTIONS WITH COHERENT AND INCOHERENT	
	RADIATION FROM THE BIOMEDICAL AND ENGINEERING SIDE,	
ENG 02	MODELING AND ENGINEERING SOLUTIONS FOR THE SYSTEM, WITH	50
ENG-02	REFERENCE TO THEORETICAL PROBLEMS AND MATERIALS	39
	Milesa Srećković, Aleksandar Bugarinović, Zoran Latinović, Svetlana Pelemiš, Mirko	
	Družijanić, Dragan Družijanić, Branka Kaludjerović, Višeslava Rajković	
ENG 02	REVIEW OF MICROBIOLOGICAL PURITY IN THE FOOD CHAIN	74
ENG-03	Bojan Golić, Biljana Pećanac, Dragan Kasagić, Dragan Knežević	/6
ENG 04	MICROBIOLOGICAL STATUS OF WATER IN THE FOOD INDUSTRY	02
ENG-04	Bojan Golić, Dragan Kasagić, Biljana Pećanac, Dragan Knežević	83
	OUALITY OF HONEY AND SUSPICION OF HONEY ADULTERATION	
ENG-05	Biliana Pećanac. Bojan Golić, Dragan Kasagić, Dragan Knežević	88
	MICROBIOLOGICAL STATUS OF MINCED MEAT MECHANICALLY	
	SEPARATED MEAT AND SHAPED MINCED MEAT ACCORDING TO	
ENG-06	PROCESS HYCIENE CRITERIA	97
	Dragan Kasagić Bojan Golić Biliana Pećanac Dragan Knežević	
	THE FEFECT OF REPLACING PART OF WHEAT FLOUD IN MUFFINS	
	WITH OLINOA ON CLUTENIN PROTEINS	
ENG-07	Dragana Škuletić, Vesna Gojković Cvietković, Želika Marianović Balahan, Dragan	103
	Vujadinović Milan Vukić Milanko Smiljanić Liubica Vasiljević	
	Val ODIZATION OF STDAW DU DEOD THE DADED INDUSTDA DASED	
	VALOKIZATION OF SIKAW FULFFOR THE FAFER INDUSTRI DASED ON THE WATED DESIGNANCE OF DDINTS MADE WITH DIFFEDENT	
ENG-08	ON THE WATEK RESISTANCE OF FRINTS MADE WITH DIFFERENT DDINTING TECHNIQUES	113
	Ivana Diazoniá Katia Datria Maratiá Maia Dudalf Valantina Dadiá Salaž Irana Datas	
	Tvana Plazonic, Kaija Petric Maretic, Maja Rudoll, Valentina Radic Seles, Irena Bates	
	EPOXIDATION OF CAMELINA SEED OIL BY IN 5110 PERACID	
ENG-09	MEUHANISM	121
	Ivana M. Savic Gajic, Ivan M. Savic, Siadana M. Kakita, Aleksandar Dosic, Milomirka	
	IN VITRO ANTIOXIDANT ACTIVITY OF COTTON FABRIC TREATED	
ENC 10	WITH ETHANOL AND WATEK THYMUS SERPYLLUM L. (WILD THYME)	100
ENG-10		128
	Milena Milosevic, Aleksandra A. Jovanovic, Petar Batinic, Dragana Grujic, Natasa	
-	Knezevic, Aleksandar Marinkovic, Jovana Milanovic	
	MACERATION AND HEAT-ASSISTED EXTRACTION OF POLYPHENOLS	
ENG-11	FROM ALOE VEKA	136
	Natalija Cutović, Aleksandra A. Jovanović, Muna Rajab Elferjane, Violeta	
	Milutinovic, Predrag Petrovic, Aleksandar Marinkovic, Branko Bugarski	
	THE INFLUENCE OF ULTRASOUND EXPOSURE TIME ON POLYPHENOL	
	AND FLAVONOID YIELD AND ANTIOXIDANT POTENTIAL OF SATUREJA	
ENG-12	MONTANA L. EXTRACTS	144
	Natalija Cutović, Aleksandra A. Jovanović, Petar Batinić, Tatjana Marković, Dragoja	
	Radanović, Aleksandar Marinković, Branko Bugarski	
	THE STABILITY OF LIPOSOMES WITH ERGOSTEROL AND THYMUS	
ENG-13	SERPYLLUM L. EXTRACT	149
ENG-15	Aleksandra A. Jovanović, Predrag M. Petrović, Danica Cujić, Sandra Stepanović,	117
	Marija Gnjatović, Aleksandar Marinković, Branko Bugarski	
	ULTRASOUND-ASSISTED EXTRACTION OF ROSA CANINA L. USING	
ENG-14	NATURAL DEEP EUTECTIC SOLVENTS	156
D110-14	Aleksandra A. Jovanović, Rada Pjanović, Jelena Żivković, Katarina P. Šavikin, Marija	150
	Gnjatović, Aleksandar Marinković, Branko Bugarski	
	CHEMICAL COMPOSITION AND ANTIOXIDANT CAPACITY OF THE	
ENG 15	ESSENTIAL OILS FROM TWO HEMOTYPES OF SATUREJA MONTANA L.	163
EN0-15	Petar Batinić, Aleksandra A. Jovanović, Natalija Čutović, Tatjana Marković, Dragoja	105
	Radanović, Aleksandar Marinković, Branko Bugarski	

	COMPARISON OF MACERATION AND ULTRASOUND-ASSISTED	
	EXTRACTION OF ANTIOXIDANT COMPOUNDS FROM VACCINIUM	
ENG-16	MYRTILLUS L.	172
	Petar Batinić, Aleksandra A. Jovanović, Muna Rajab Elferjane, Natalija Čutović,	
	Milena Milošević, Aleksandar Marinković, Branko Bugarski	
	APPLICATION OF CRUDE FUNGAL LACCASE FROM GANODERMA SPP.	
	IN DECOLORIZATION OF TRIPHENYLMETHANE DYE CRYSTAL	
ENG-17	VIOLET	179
	Nevena Ilić, Marija Milić, Slađana Davidović, Suzana Dimitrijević-Branković,	
	Katarina Mihajlovski	
	IMMOBILIZATION OF CRUDE FUNGAL LACCASE FROM GANODERMA	
FNG-18	SPP. ON MODIFIED TITANIUM DIOXIDE NANOPARTICLES	187
LING-10	Nevena Ilić, Slađana Davidović, Miona Miljković, Neda Radovanović, Suzana	107
	Dimitrijević-Branković, Katarina Mihajlovski	
	INVESTIGATING THE POSSIBILITY OF USING SEWAGE SLUDGE ASH IN	
ENG-19	THE PRODUCTION OF COMPLEX MINERAL FERTILIZERS	197
	Alija Salkunić, Slavko Smiljanić, Bajro Salkunić, Mikloš Tot	
	INFLUENCE OF PROCESS PARAMETERS ON THE EXTRACTION OF	
	PHENOLIC COMPOUNDS FROM BLACK ELDERBERRY FLOWERS	
ENG-20	(SAMBUCUS NIGRA L.)	205
	Nebojša Vasiljević, Vladan Mićić, Duško Kostić, Zdravka Jovanović, Dragica Lazić,	
	Mitar Perušić, Goran Tadić	
	INVESTIGATION OF THE INFLUENCE OF BIOFUELS ON THE	
FNG-21	PERFORMANCE OF INTERNAL COMBUSTION ENGINES	216
LING 21	Milan Eremija, Snežana Petković, Pero Dugić, Aleksandra Borković,	210
	Svetko Milutinović	
	COMPETENCE OF THE DOMESTIC LABORATORY THROUGH	
ENG-22	INTERLABORATORY TESTING OF NATURAL GAS	222
	Mara Jeremić, Anja Pajić, Aleksandra Borković, Pero Dugić	
	RISK ANALYSIS OF PRESENCE OF AFLATOXIN M1 IN THE	
ENG-23	PRODUCTION CHAIN OF MILK PRODUCTS	237
	Senad Krivdić, Dragan Vujadinović, Vesna Gojković Cvjetković	
	KINETICS AND ISOTHERMS MODELING OF SILVER REMOVAL ONTO	
ENG-24	MACROPOROUS AMINO SORBENT	244
2110 21	Tamara T. Tadić, Zvjezdana P. Sandić, Sandra S. Bulatović, Bojana M. Marković,	2
	Aleksandra B. Nastasović, Antonije E. Onjia	
	OPTIMIZATION OF LINDANE SORPTION FROM AQUEOUS SOLUTION	
ENG-25	BY MACROPOROUS COPOLYMER USING EXPERIMENTAL DESIGN	253
2110 25	Tamara T. Tadić, Sandra S. Bulatović, Bojana M. Marković, Aleksandra B.	200
	Nastasović, Mila V. Ilić, Zorica M. Vuković, Antonije E. Onjia	
	PHYSICOCHEMICAL CHARACTERISATION OF THYMUS SERPYLLUM	
ENG-26	EXTRACTS PREPARED USING NATURAL DEEP EUTECTIC SOLVENTS	258
2110 20	Milena Milošević, Aleksandar Marinković, Petar Batinić, Ivan Đuričković,	200
	Aleksandra A. Jovanović	

ENVIRONMENT

	RISK ASSESSMENT OF LEACHATE POLLUTION OF THE WATER					
ENV-01	RESOURCES IN THE SAVA RIVER BASIN	267				
	Nebojša Knežević, Svjetlana Sredić					
	IMPROVEMENT OF POTABLE WATER PREPARATION					
ENV-02	TECHNOLOGICAL PROCESSES AT THE ILIDŽA SPRING PLANT	284				
	Nebojša Knežević, Igor Milunović					
	THE PRESENCE OF MICROPLASTICS IN THE ENVIRONMENT, SOURCES					
ENV-03	OF HUMAN EXPOSURE, AND POTENTIAL HEALTH EFFECTS	293				
	Jelena Vuković, Slavko Smiljanić, Milomirka Obrenović, Una Marčeta, Bogdana Vujić					
	ADSORPTION AND DEGRADATION POTENTIAL OF IMIDACLOPRID					
ENV-04	INSECTICIDE THROUGH CHEMICALLY MODIFIED CELLULOSE					
	MATERIAL	303				
	Nataša Knežević, Jovana Bošnjaković, MarijaD. Vuksanović, Katarina Jovanović-					
	Radovanov, Srećko Manasijević, Adela Egelja, Aleksandar Marinković					
	IDIZED COTTON FABRIC CROSS-LINKED WITH CITRIC ACID AND					
FNV-05	ETHYL LYSINATE FOR CATIONIC DYES ADSORPTION	310				
LIVV 05	Jovana Bošnjaković, Ivan Đuričković, Jovana Milanovic, Dragana Grujic, Aleksandar	510				
	Marinković, Srećko Manasijecić, Milena Milošević					
ENV-06	CENTIPEDES (CHILOPODA) AS BIOINDICATORS OF SOIL POLLUTION	317				
LIN -00	Bojan M. Mitić, Ljubica C. Vasiljević, Slavica S. Borković-Mitić	517				
FNV-07	MECHANISM AND PARAMETERS OF THE EBPR PROCESS	325				
LINV-07	Sofren Pavlović, Slavko Smiljanić	525				
	POLLUTANT CLASSIFICATION IN THE NORTHEASTERN PART OF					
FNV-08	PODMAJEVICA	343				
LIN -00	Jagoda S. Krsmanovic, Ljubica C. Vasiljevic, Snežana B. Radulovic,	545				
	Dušanka Lj. Cvijanovic, Rado C. Savic					

MATERIALS

MAT-01	CORROSION RESISTANCE OF BINARY (Ge–Sn, Ge-In, In-Sn) AND TERNARY (Ge-In-Sn) ALLOYS IN 3% NaCl Nemanja Tošković, Milena Premović, Danijela Rajić, Marija Mitrović, Dragan Tošković	353
MAT-02	SWELLING BEHAVIOR OF Ag/PVA HYDROGEL NANOCOMPOSITES: INFLUENCE OF TEMPERATURE AND SWELLING MEDIUM Nikolina Nikolić, Jelena Spasojević, Ivana Vukoje, Julijana Tadić, Aleksandra Radosavljević	362
MAT-03	INFLUENCE OF CURRENT DENSITY ON THE MORPHOLOGY OF HARD CHROME COATINGS Snježana Vučićević, Stana Stanišić, Marija Mitrović, Zorica Ristić, Danijela Matović, Dubravka Banjac, Milorad Tomić	372

OTHER AREAS

01H-01

AUTHOR INDEX

AUTHOR INDEX

404

CIP - Каталогизација у публикацији Народна и универзитетска библиотека Републике Српске, Бања Лука

66.02-9(082)(0.034.2) 502/504(082)(0.034.2) 54(082)(0.034.2)

INTERNATIONAL Congress "Engineering, Environment and Materials in Process Industry" (8 ; 2023 ; Jahorina)

Proceedings [Електронски извор] / VIII International Congress "Engineering, Environment and Materials in Process Industry", EEM 2023, Jahorina, March 20-23, 2023 ; [editorial board Dragan Vujadinović, Mirjana Beribaka]. - Onlajn izd. - El. zbornik. - Zvornik : Faculty of Technology, 2023

Sistemski zahtjevi: Nisu navedeni. - Način pristupa (URL): https://eem.tfzv.ues.rs.ba/. - Nasl. sa naslovnog ekrana. - Opis izvora dana 26.7.2023. - Registar.

ISBN 978-99955-81-45-9

COBISS.RS-ID 138870785

UDK 546.57:66.081 Original scientific paper

KINETICS AND ISOTHERMS MODELING OF SILVER REMOVAL ONTO MACROPOROUS AMINO SORBENT

<u>Tamara T. Tadić¹</u>, Zvjezdana P. Sandić², Sandra S. Bulatović¹, Bojana M. Marković¹, Aleksandra B. Nastasović¹, Antonije E. Onjia³

 ¹University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, 11000 Belgrade, Serbia, tamara.tadic@ihtm.bg.ac.rs
² University of Banja Luka, Faculty of Natural Science and Mathematics, Dr. Mladena Stojanovića 2, 78000 Banja Luka, B&H

³ University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia

Abstract

Silver as one of the most known precious metal is used on a large scale in various industrial branches and the release of silver ions from such industrial activities potentially can cause serious environmental problems. Therefore, the removal of this metal from wastewater is a great challenge, and it is crucial for the quality improvement of the environment. Porous polymer materials with high specific surface areas and other specific physical and chemical characteristics have gained much attention as sorbents in the field of environmental protection. In this paper, macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) copolvmer synthesized by suspension copolymerization and functionalized with diethylenetriamine was employed for silver ions sorption from aqueous solution at unadjusted pH and room temperature. The sorption kinetics and isotherms were studied to establish the mechanisms of sorption process. The kinetic data were modeled with pseudo-first-order (PFO). pseudo-second-order (PSO), Elovich and fractional power (FP) models as well as intraparticle diffusion (IPD) and liquid diffusion model (LFD), while the equilibrium data were analized using Langmuir, Freundlich, Sips and Redlich-Peterson isotherm models. Eight error functions such as coefficient of determination (R^2) , Marguardt's percent standard deviation (MPSD), Chi-square statistic test (χ^2) , hybrid fractional error function (HYBRID), the root mean square error (RMSE), the sum of the errors squared (SSE), sum of the absolute errors (SAE), and average relative error (ARE) were used to estimate the error deviations between theoretically predicted and experimental values of sorption capacities. The best kinetic and isotherm models were determined by normalizing eight error functions and finding the sum of normalized error value (SNE). The sorption kinetic studies revealed that the sorption of silver by macroporous amino-functionalized sorbent obeys the PSO kinetic model. In addition, the results indicate that sorption was governed by intraparticle diffusion with the evident influence of liquid film diffusion. The obtained results showed that the sorption isotherm data were satisfactorily fitted to the Redlich-Peterson isotherm model.

Key words: silver, macroporous sorbent, error functions, glycidyl methacrylate, sorption

Introduction

Silver is a very useful precious metal due to its excellent thermal and electrical conductivity, malleability, photosensitivity, and antimicrobial properties and it is abundantly used in the production of mirrors, jewelry, high-quality photography and radiographic films, antimicrobial materials, batteries, and electronic devices (Akgül et al., 2006; Huang et al., 2022; Mao et al., 2023). Power plants, waste incineration, metal smelters, and urban agglomerations are the main source of anthropogenic emissions of silver, while natural sources are windblown dust, volcanic emissions, forest fires, and biogenic and oceanic emissions (Reiman and Fabian, 2022). Silver occurs naturally in the form of insoluble oxides, sulfides and other salts. Rapid industrialization and anthropogenic activities, including modern life habits, have led to high silver concentrations in the environment. When silver reaches the environment, it can be absorbed by biota, and it is toxic to microflora and aquatic organisms as well as humans. The soluble silver compounds may cause some toxic effects such as altering skin, and hair color, argyria, kidney and liver disease, and respiratory disorders (Jintakosol and Nitayaphat, 2016). In rivers and lakes, the silver concentrations are in range between 0.01 µg/dm³ in unpolluted areas, and 0.1 µg/dm³ in urban and industrial areas (Causapé et al., 2021). According to the World Health Organization (WHO), the allowable silver ions concentration for drinking water disinfection is 0.1 mg/dm³, but the U.S. Environmental Protection Agency (EPA) limited the maximum concentration up to 0.05 mg/dm³ (Pelkonen et al., 2003).

Because of the toxicity and strong economical need for silver, there is a growing interest in the removal and recovery of this metal from industrial wastewater. A variety techniques such as precipitation, coagulation, electrolysis, membrane separation, solvent extraction, solid phase extraction, biosorption and sorption have been development for the treatment of silver-contaminated waters (Jintakosol and Nitayaphat, 2016; Virolainen et al., 2015). Among these techniques, sorption has been widely used due to its low cost, simplicity, and high efficiency (Ren et al., 2022). Different economical adsorbents (lignin, chitosan, clay, zeolite, activated carbons, and fly ash) have been used for the removal of silver ions from aqueous solution (Akgül et al., 2006; Coruh et al., 2011; Jintakosol and Nitayaphat, 2016; Prakoso, 2018). However, this type of adsorbents have some disadvantages such as dissolution in highly acidic solution, poor mechanical and thermal properties, lower adsorption capacity as well as poor reusability (Nitayaphat and Jintakosol, 2015; Ren et al., 2022). Therefore, it was necessary to develop low-cost, energy-efficient, and reusable materials for water treatment. These materials are characterized with large surface area, and the availability of various functional groups (-NH₂, -COOH, -OH) for modification, and with the ability of selectivity and regeneration (Waheed et al., 2021).

Polymeric materials are widely used as metal sorbents due to their specific surface area, high porosity, dimensional stability, high chemical and thermal stability, and reusability (Suručić et al., 2023). Among the polymeric sorbents, glycidyl methacrylate (GMA) based polymers are very interesting because of the presence of epoxy groups which offer numerous modification possibilities and therefore have versatile applications (Marković et al., 2021; Suručić et al., 2023; Tadić et al., 2022).

In this work, the macroporous GMA based copolymer, PGME-deta, was tested as a potential Ag(I) sorbent from aqueous solutions. Kinetic data were analyzed using six kinetic models to determine the nature of sorption kinetics and the rate-controlling step for silver sorption by PGME-deta. The isotherm parameters were also evaluated from the equilibrium experimental data.

Materials and Methods

Macroporous poly(glycidyl methacrylate-*co*-ethylene glycol dimethacrylate) copolymer, PGME-deta, was prepared by suspension copolymerization and functionalized with

diethylenetriamine as described previously (Ekmeščić et al., 2019). The solution of silver ions was prepared using AgNO₃ (Sigma-Aldrich, USA).

The sorption studies of silver ions from aqueous solutions were carried out in batch static conditions at unadjusted pH and room temperature. Kinetic experiment was performed by adding 0.5 g of PGME-deta to 0.05 dm³ of 50 mmol/dm³ Ag(I) solution with contact time ranging from 0 to 180 min. The residual concentrations of Ag(I) ions were determined by using inductively coupled plasma optical emission spectrometry (ICP-OES) (model Thermo Scientific iCAP 6500, Waltham, MA, USA). The sorption capacity at contact time, Q_t (mmol/g), was obtained according to the following equation:

$$Q = \frac{(C_i - C_i) * V}{m} \tag{1}$$

where C_i (mmol/dm³) and C_i (mmol/dm³) are the initial and final concentrations of Ag(I) ions in aqueous solutions, V (dm³) is the volume of aqueous solution and m (g) is the weight of polymer sorbent.

The equilibrium study was examined using 0.1 g of PGME-deta added to 0.01 dm³ of initial Ag(I) ion concentrations (10 - 100 mmol/dm³) for 3 h at room temperature. The equilibrium sorption capacity, Q_e (mmol/g), was calculated according to the following equation:

$$Q = \frac{(C_i - C_e) * V}{m} \tag{2}$$

where C_e (mmol/dm³) is the equilibrium concentrations of Ag(I) ions in aqueous solutions.

Results and Discussion

The sorption kinetics of Ag(I) ions by PGME-deta was investigated using four surface-reaction models (pseudo-first-order (PFO), pseudo-second-order (PSO), Elovich, fractional power (FP) models) (Nastasović et al., 2022). The non-linear analysis was used to fit the experimental data to determine the best-fit kinetic model. To estimate the error deviations between theoretically predicted and experimental values of sorption capacities, eight error functions are used (Shahmohammadi-Kalalagh and Babazadeh, 2014). The coefficient of determination (R^2), Marquardt's percent standard deviation (MPSD), Chi-square statistic test (χ^2), hybrid fractional error function (HYBRID), the root mean square error (RMSE), the sum of the errors squared (SSE), sum of the absolute errors (SAE), and average relative error (ARE) are the error functions that have been employed for analysis. The best kinetic models were determined by normalizing eight error functions and finding the sum of normalized error value (SNE). The calculated kinetic parameters and error functions data for four surface-reactions models are presented in Table 1 to Table 4, while fitting curves are portrayed in Figure 1.

Based on the obtained results, it is noted that the HYBRID error function showed the best fit giving the lowest SNE value for the PFO and FP kinetic model, while SAE and χ^2 produced the best fit for PSO and Elovich kinetic models, respectively. The highest R^2 value and the lowest values of SSE, SAE, ARE, HYBRID, MPSD, χ^2 and RMSE indicate the PSO model is the most suitable model for Ag(I) sorption onto PGME-deta. Also, the sorption capacity at the equilibrium value obtained by the PSO model ($Q_e^{cal} = 1.09 \text{ mmol/g}$) agrees very well with the experimental sorption capacity ($Q_e^{exp} = 1.12 \text{ mmol/g}$) confirming that Ag(I) sorption process predominantly followed the pseudo-second-order kinetic model.

	R^2	SSE	SAE	ARE	HYBRID	MPSD	χ^2	RMSE
k_1 , 1/min	0.12	0.12	0.11	0.11	<u>0.12</u>	0.14	0.44	0.12
Q_e^{cal} , mmol/g	1.06	1.07	1.07	1.07	<u>1.06</u>	1.03	0.95	1.07
R^2	0.852	0.852	0.851	0.851	0.851	0.842	0.669	0.852
SSE	0.092	0.092	0.094	0.094	0.093	0.100	0.261	0.092
SAE	0.487	0.488	0.460	0.460	0.513	0.645	1.146	0.488
ARE	11.060	11.133	10.590	10.590	11.482	13.078	18.706	11.133
HYBRID	3.146	10.054	3.196	3.196	3.133	3.197	6.181	3.141
MPSD	27.585	27.555	27.838	27.838	27.445	27.319	33.016	27.555
χ^2	0.715	0.704	0.772	0.772	0.671	0.593	0.291	0.704
RMSE	0.115	0.115	0.116	0.116	0.115	0.119	0.193	0.115
SNE	5.613	6.287	5.670	5.670	<u>5.596</u>	5.779	8.390	5.599

Table 1. The PFO parameters with error functions analysis.

Table 2. The PSO parameters with error functions analysis.

	R^2	SSE	SAE	ARE	HYBRID	MPSD	χ^2	RMSE
k_2 , g/mmol min	0.19	0.19	<u>0.19</u>	0.27	0.23	0.41	0.42	0.19
Q_e^{cal} , mmol/g	1.12	1.12	<u>1.12</u>	1.11	1.09	0.99	1.04	1.12
R^2	0.866	0.866	0.866	0.848	0.863	0.811	0.822	0.866
SSE	0.082	0.082	0.082	0.094	0.084	0.126	0.114	0.082
SAE	0.617	0.616	0.082	0.575	0.659	0.998	0.744	0.616
ARE	12.214	12.211	12.211	11.833	12.595	15.523	13.043	12.211
HYBRID	2.429	2.431	2.431	2.658	2.403	2.754	2.894	2.431
MPSD	23.093	23.092	5.332	23.256	22.638	21.849	23.245	23.092
χ^2	0.260	0.257	0.257	0.179	0.226	0.186	0.152	0.257
RMSE	0.108	0.108	0.108	0.116	0.109	0.134	0.127	0.108
SNE	6.691	6.77	<u>5.378</u>	6.538	6.618	7.542	6.968	6.677

Table 3.	The para	meters of	Elovich	kinetic	model	with	error	functions	analy	sis.
----------	----------	-----------	---------	---------	-------	------	-------	-----------	-------	------

	R^2	SSE	SAE	ARE	HYBRID	MPSD	χ^2	RMSE
α , mmol/g min	2.29	2.29	2.38	2.38	1.70	1.60	<u>1.96</u>	2.29
β , mmol/g	6.73	6.73	7.16	7.16	6.44	6.48	<u>6.47</u>	6.73
R^2	0.860	0.860	0.832	0.844	0.857	0.851	0.859	0.960
SSE	0.086	0.086	0.099	0.099	0.088	0.093	0.087	0.086
SAE	0.739	0.739	0.719	0.719	0.754	0.763	0.734	0.739
ARE	10.470	10.468	9.732	9.732	10.469	10.576	10.200	10.468
HYBRID	1.693	1.693	1.774	1.774	1.633	1.666	1.692	1.692
MPSD	16.147	16.145	15.635	15.635	15.391	15.249	16.070	16.145
χ^2	0.106	0.106	0.126	0.126	0.109	0.117	0.105	0.106
RMSE	0.111	0.111	0.119	0.119	0.112	0.115	0.111	0.111
SNE	7.543	7.543	7.799	7.813	7.534	7.702	7.506	7.543

Figure 1. Non-linear fitting kinetic curves for Ag(I) sorption onto PGME-deta.

Table 4. The parameters of FP kinetic model with error functions analysis.

	R^2	SSE	SAE	ARE	HYBRID	MPSD	χ^2	RMSE
k_{FP} , mmol/g min	0.51	0.51	0.49	0.40	<u>0.46</u>	0.42	0.48	0.51
<i>v</i> , 1/min	0.17	0.17	0.16	0.23	<u>0.19</u>	0.21	0.18	0.17
R^2	0.819	0.819	0.807	0.762	0.809	0.790	0.815	0.819
SSE	0.116	0.116	0.128	0.164	0.125	0.142	0.120	0.116
SAE	0.918	0.918	0.888	1.013	0.931	0.982	0.928	0.918
ARE	13.939	13.914	13.123	12.504	12.755	12.567	13.471	13.914
HYBRID	2.352	2.346	2.380	2.503	2.135	2.244	2.250	2.346
MPSD	19.568	19.520	18.785	16.860	16.893	16.292	18.405	19.520
χ^2	0.149	0.149	0.169	0.179	0.154	0.173	0.146	0.149
RMSE	0.129	0.129	0.135	0.153	0.133	0.142	0.131	0.129
SNE	7.230	7.223	7.319	7.688	<u>7.038</u>	7.323	7.117	7.223

In order to define the rate-determining step of the Ag(I) sorption by macroporous PGME-deta sorbent, two diffusion kinetic models (intra-particle-diffusion (IPD) and liquid film diffusion (LFD) models) were utilized and the results are shown in Table 5. The higher R² values (> 0.900) for IPD revealed that sorption is more particle diffusion controlled than LFD ($R^2 = 0.736$). However, the IPD shows three diffusion stages, indicating that IPD is not the only rate-controlling step of Ag(I) sorption process.

		<u> </u>		- <u>8(-) = 0</u>	
Intra-partie	ele diffusio	Liquid film diffusio	n madal		
Stage	Ι	II	III		n model
k_{id} (mmol/g min ^{0.5})	0.17	0.07	0.01	$k_{LFD} \cdot 10^3 (1/\text{min})$	2.72
C_{id} (mmol/g)	0.19	0.65	1.01	C_{LFD}	-1.16
\mathbb{R}^2	0.908	0.971	0.974	\mathbb{R}^2	0.736

Table 5. Kinetic diffusion models parameters for Ag(I) sorption by PGME-deta

For determining potential interactions between PGME-deta and Ag(I) ions and predicting the mechanisms of the sorption process, the four isotherm models were used. The experimental equilibrium data were fitted with Langmuir, Freundlich, Sips, and Redlich–Peterson isotherm models using non-linear regression analysis (Nastasović et al., 2022). The best-fitting model was determined by normalizing eight error functions (R^2 , MPSD, χ^2 , HYBRID, RMSE, SSE, SAE, and ARE) and finding the sum of normalized error value (SNE). Isotherm parameters and error function data are presented in Table 6 to Table 9, while isotherm fitting curves are showed in Figure 2.

Table 6. The parameters of Langmuir isotherm model with error functions analysis									
	R^2	SSE	SAE	ARE	HYBRID	MPSD	χ^2	RMSE	
$Q_{max, L}$, mmol/g	1.22	1.22	1.24	1.25	1.23	1.50	<u>2.14</u>	1.22	
K_L , dm ³ /mmol	0.38	0.38	0.33	0.32	0.36	0.10	<u>0.13</u>	0.38	
R^2	0.958	0.958	0.950	0.949	0.958	0.958	0.961	0.958	
SSE	0.008	0.008	0.010	0.010	0.008	0.008	0.008	0.008	
SAE	0.166	0.166	0.144	0.140	0.160	0.160	0.135	0.166	
ARE	4.503	4.502	3.452	3.383	4.196	4.196	3.196	4.502	
HYBRID	0.432	4.644	0.486	0.491	0.421	0.421	0.371	0.431	
MPSD	6.925	6.923	6.878	6.905	6.623	6.623	5.989	6.923	
χ^2	0.009	0.009	0.010	0.010	0.009	0.009	0.008	0.009	
RMSE	0.064	0.064	0.071	0.071	0.064	0.064	0.064	0.062	
SNE	7.431	16.008	7.587	7.583	7.226	7.226	<u>6.549</u>	7.402	

Figure 2. Non-linear fitting isotherm curves for Ag(I) sorption onto PGME-deta

	Table 7. The parameters of	of Freundlich isotherm m	iodel with error	functions anal	lysis
--	----------------------------	--------------------------	------------------	----------------	-------

	R^2	SSE	SAE	ARE	HYBRID	MPSD	χ^2	RMSE
K_F , dm ³ mmol/g	0.61	<u>0.61</u>	0.62	0.49	0.58	0.55	0.61	0.61
n	6.30	<u>6.29</u>	6.70	4.53	5.73	5.30	6.12	6.29
R^2	0.854	0.854	0.848	0.780	0.848	0.834	0.853	0.854
SSE	0.032	0.032	0.034	0.055	0.034	0.038	0.032	0.032
SAE	0.286	0.286	0.281	0.317	0.292	0.299	0.293	0.286
ARE	8.654	8.651	8.685	7.534	8.317	8.061	8.741	8.651
HYBRID	1.970	1.969	2.075	2.670	1.865	1.938	1.948	1.969
MPSD	15.993	15.983	16.415	16.161	14.715	14.366	15.771	15.983
χ^2	0.039	0.039	0.042	0.066	0.041	0.045	0.039	0.039
RMSE	0.127	0.127	0.130	0.165	0.130	0.137	0.127	0.127
SNE	6.552	<u>6.551</u>	6.685	7.760	6.479	6.634	6.565	6.551

	R^2	SSE	SAE	ARE	HYBRID	MPSD	χ^2	RMSE
$Q_{m,S}$, mmol/g	1.16	1.16	1.21	1.21	1.16	<u>1.16</u>	1.16	1.16
K_S , dm ³ /mmol	0.21	0.21	0.21	0.21	0.20	<u>0.20</u>	0.20	0.21
n_s	0.66	0.66	0.69	0.69	0.64	<u>0.63</u>	0.65	0.66
R^2	0.962	0.962	0.954	0.954	0.961	0.961	0.960	0.962
SSE	0.007	0.007	0.009	0.009	0.008	0.008	0.008	0.007
SAE	0.165	0.165	0.150	0.150	0.162	0.160	0.160	0.165
ARE	4.248	4.248	4.009	4.009	4.001	3.977	3.851	4.248
HYBRID	0.743	0.743	0.911	0.911	0.725	0.728	0.734	0.743
MPSD	6.188	6.187	6.845	6.845	5.926	5.940	5.871	6.187
χ^2	0.007	0.007	0.009	0.009	0.007	0.007	0.007	0.007
RMSE	0.061	0.061	0.068	0.068	0.062	0.062	0.063	0.061
SNE	7.282	7.282	7.847	7.847	7.156	<u>7.148</u>	7.169	7.282

Table 8. The parameters of Sips isotherm model with error functions analysis

As can be seen from the presented results, the χ^2 error function indicated the best correlation for the two isotherm models (Langmuir and Redlich-Peterson), followed by the SSE and MPSD error function for Freundlich and Sips isotherm models, respectively. Also, based on the SNE values, the best-fitted isotherm models for the sorption of Ag(I) onto PGME-deta were arranged as: Redlich-Peterson > Langmuir > Freundlich > Sips. These results suggest that the surface of PGME-deta is homogenous and the Ag(I) sorption is a monolayer.

	R^2	SSE	SAE	ARE	HYBRID	MPSD	χ^2	RMSE
A, dm ³ /g	0.40	0.40	0.40	0.40	0.38	0.36	<u>0.38</u>	0.40
<i>B</i> , $dm^3/mmol$	0.29	0.29	0.29	0.29	0.26	0.23	<u>0.25</u>	0.29
g	1.03	1.03	1.03	1.03	1.05	1.06	<u>1.05</u>	1.03
R^2	0.975	0.975	0.959	0.960	0.975	0.975	0.975	0.975
SSE	0.005	0.005	0.008	0.008	0.005	0.005	0.005	0.005
SAE	0.111	0.111	0.091	0.091	0.109	0.108	0.107	0.111
ARE	2.553	2.553	2.093	2.089	2.457	2.448	2.398	2.553
HYBRID	0.422	0.422	0.745	0.729	0.420	0.422	0.421	0.422
MPSD	4.343	4.343	5.849	5.788	4.315	4.335	4.308	4.343
χ^2	0.004	0.004	0.007	0.007	0.004	0.004	0.004	0.004
RMSE	0.049	0.049	0.064	0.063	0.049	0.049	0.049	0.049
SNE	6.263	6.263	7.617	7.531	6.199	6.191	<u>6.174</u>	6.263

Table 9. The parameters of Redlich–Peterson isotherm model with error functions analysis

Conclusions

The sorption kinetic studies revealed that the sorption of silver by macroporous amino-functionalized sorbent, PGME-deta, obeys the PSO kinetic model. According to results, sorption was governed by intra particle diffusion with the evident influence of liquid film diffusion. The obtained results showed that the sorption isotherm data were satisfactorily fitted to the Redlich-Peterson isotherm model, suggesting a monolayer sorption at specific homogenous sites.

Acknowledgments

This research has been financially supported by the Ministry of Science, Technological Development and Innovation of Republic of Serbia (Contract No: 451-03-47/2023-01/200026 and 451-03-47/2023-01/200135).

References

- Akgül, M., Karabakan, A., Acar, O., & Yürüm, Y. (2006). Removal of silver (I) from aqueous solutions with clinoptilolite. *Microporous and Mesoporous Materials*, *94*(1-3), 99-104.
- Causapé, J., Orellana-Macías, J.M., Valero-Garcés, B., & Vázquez, I. (2021). Influence of hail suppression systems over silver content in the environment in Aragón (Spain). II: Water, sediments and biota. *Science of the Total Environment*, 779, 146403.
- Çoruh, S., Elevli, S., Şenel, G., & Ergun, O.N. (2010). Adsorption of silver from aqueous solution onto fly ash and phosphogypsum using full factorial design. *Environmental Progress & Sustainable Energy*, 30(4), 609-619.
- Ekmeščić, B.M., Maksin, D.D., Marković, J.P., Vuković, Z.M., Hercigonja, R.V., Nastasović, A.B., & Onjia, A.E. (2019). Recovery of molybdenum oxyanions using macroporous copolymer grafted with diethylenetriamine. *Arabian Journal of Chemistry*, 12(8), 3628-3638.
- Huang, Y., Wu, Y., Ding, W., Sun, Q., Hu, C., Liu, B., Liu, H., & Zheng, H. (2022). Anion-synergistic adsorption enhances the selective removal of silver ions from complex wastewater by chitosan-coated magnetic silica core-shell nanoparticles. *Journal of Cleaner Production*, 339, 130777.
- Jintakosol, T., & Nitayaphat, W. (2016). Adsorption of Silver (I) From Aqueous Solution Using Chitosan/Montmorillonite Composite Beads. *Materials Research*, 19(5), 1114-1121.
- Mao, S., Shen, T., Zhao, Q., Han, T., Ding, F., Jin, X., & Gao, M. (2023). Selective capture of silver ions from aqueous solution by series of azole derivatives-functionalized silica nanosheets. *Chinese Journal of Chemical Engineering*, *57*, 319-328.
- Marković, B.M., Stefanović, I.S., Nastasović, A.B., Sandić, Z.P., Suručić, Lj.T., Dapčević, A., Džunuzović, J.V., Jagličić, Z., Vuković, Z.M., Pavlović, V., & Onjia, A.E. (2021). Novel Magnetic Polymer/bentonite Composite: Characterization and Application for Re(VII) and W(VI) Adsorption. *Science of Sintering*, 53, 419-428.
- Nastasović, A., Marković, B., Suručić, Lj., & Onjia, E. (2022). Methacrylate-Based Polymeric Sorbents for Recovery of Metals from Aqueous Solutions. *Metals*, *12*(5), 814.
- Nitayaphat, W., & Jintakosol., T. (2015). Removal of silver(I) from aqueous solutions by chitosan/bamboo charcoal composite beads. *Journal of Cleaner Production*, 87, 850-855.
- Pelkonen, K.H.O., Heinonen-Tanski, H., & Hänninen, O.O.P. (2003). Accumulation of silver from drinking water into cerebellum and musculus soleus in mice. *Toxicology*, 186(1-2), 151-157.
- Prakoso, N.I. (2018). Application of Lignin as Adsorbent for Silver (Ag) and Copper (Cu) on Electroplating Waste in Kota Gede. *Indonesian Journal of Chemical Research*, 4(1), 1-7.
- Reimann, C., & Fabian, K. (2022). Quantifying diffuse contamination: Comparing silver and mercury in organogenic and minerogenic soil. *Science of the Total Environment*, 832, 155065.
- Ren, X., Wang, C.C., Li, Y., Wang, C.Y., Wang, P., & Gao, S. (2022). Ag(I) removal and recovery from wastewater adopting NH₂-MIL-125 as efficient adsorbent: A 3Rs (reduce, recycle and reuse) approach and practice. *Chemical Engineering Journal*, 442(1), 136306.
- Shahmohammadi-Kalalagh, Sh., & Babazadeh, H. (2014). Isotherms for the sorption of zinc and copper onto kaolinite: comparison of various error functions. *International Journal of Environmental Science and Technology*, 11, 111-118.
- Suručić, Lj., Janjić, G., Marković, B., Tadić, T., Vuković, Z., Nastasović, A., & Onjia, A. (2023). Speciation of Hexavalent Chromium in Aqueous Solutions Using a Magnetic Silica-Coated Amino-Modified Glycidyl Methacrylate Polymer Nanocomposite. *Materials*, 16(6), 2233.
- Tadić, T., Marković, B., Radulović, J., Lukić, J., Suručić, Lj., Nastasović, A., & Onjia, A. (2022). A Core-Shell Amino-Functionalized Magnetic Molecularly Imprinted Polymer Based on

Glycidyl Methacrylate for Dispersive Solid-Phase Microextraction of Aniline. *Sustainability*, 14(15), 9222.

- Virolainen, S., Tyster, M., Haapalainen, M., & Sainio, T. (2015). Ion exchange recovery of silver from concentrated base metal-chloride solutions. *Hydrometallurgy*, 152, 100-106.
- Waheed, A., Baig, N., Ullah, N., & Falath, W. (2021). Removal of hazardous dyes, toxic metal ions and organic pollutants from wastewater by using porous hyper-cross-linked polymeric materials: A review of recent advances, *Journal of Environmental Management*, 287, 112360.