26th Congress of Chemists and Technologists of Macedonia

20-23 9 2023 OHRID, RN MACEDONIA

96666

Сојуз на хемичарите и технолозите на Македонија Society of Chemists and Technologists of Macedonia

26th Congress of SCTM with International Participation

BOOK of ABSTRACTS

20–23 September 2023 Metropol Lake Resort Ohrid, N. Macedonia

Сојуз на хемичарите и технолозите на Македонија Society of Chemists and Technologists of Macedonia

20-23 September 2023, Metropol Lake Resort, Ohrid

SCIENTIFIC COMMITTEE MEMBERS

President

Prof. Dr. Jadranka Blazhevska Gilev, Faculty of Technology and Metallurgy, Ss. Cyril and Methodius University in Skopje, N. Macedonia

Members:

Prof. Dr. **Trajče Stafilov**, Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, N. Macedonia

Prof. Dr. **Viktor Stefov**, Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, N. Macedonia

Prof. Dr. **Blažo Boev**, Faculty of Natural and Technical Sciences, Goce Delčev University, Štip, N. Macedonia

Prof. Dr. **Panče Naumov**, Division of Science and Mathematics, New York University (NYU) Abu Dhabi

Prof. Dr. **Radmila Tomovska**, POLYMAT Institute, University of the Basque Country, San Sebastian, Spain

Prof. Dr. Vesna Rafajlovska, Faculty of Technology and Metallurgy, Ss. Cyril and Methodius University in Skopje, N. Macedonia

Prof. Dr. **Emilija Fidančevski**, Faculty of Technology and Metallurgy, Ss. Cyril and Methodius University in Skopje, N. Macedonia

ORGANIZING COMMITTEE MEMBERS

President

Prof. Dr. **Biljana Angjusheva**, Faculty of Technology and Metallurgy, Ss. Cyril and Methodius University in Skopje, N. Macedonia

Members:

Assoc. Prof. Dr. **Vojo Jovanov**, Faculty of Technology and Metallurgy, Ss. Cyril and Methodius University in Skopje, N. Macedonia

Iva Dimitrievska, MSc, Faculty of Technology and Metallurgy, Ss. Cyril and Methodius University in Skopje, N. Macedonia

Marija Prosheva, MSc, Faculty of Technology and Metallurgy, Ss. Cyril and Methodius University in Skopje, N. Macedonia

Ivona Sofronievska, MSc, Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, N. Macedonia

Marinela Cvetanoska, MSc, Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, N. Macedonia

PSSE P-15

Formic Acid Electrooxidation on Cr-Supported Platinum Thin Film Catalyst

D. L. Milošević,* S. I. Stevanović and D. V. Tripković

University of Belgrade – Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, 11000 Belgrade, Republic of Serbia

<u>*dragana.milosevic@ihtm.bg.ac.rs</u>

In this study, the formic acid electrooxidation reaction was studied on a platinum thin film catalyst obtained by deposition on chromium support (Pt/Cr). In an attempt to reduce the proneness of Pt to poisoning species i.e. CO and improve the catalytic performance of Pt/Cr at low potentials in the formic oxidation reaction, the as- prepared catalyst was modified using controlled thermal treatment. The influence of thermal treatment on the electrode surface morphology was monitored using an atomic force microscope (AFM). Thus obtained catalyst was electrochemically characterized with cyclic voltammetry and oxidation of CO monolayer, while the performance of the catalyst was tested in a formic acid oxidation reaction. The improved activity on annealed Pt/Cr system is a consequence of the surface reconstruction of Pt film with predominant (111) orientation. Compared to other facets, the (111) facet selectively favors direct HCOOH oxidation, avoiding Co_{ad} poisoning at low potentials. Moreover, the Pt (111) facets offer improved stability of the catalyst compared to the as-prepared polycrystalline film. Finally, the Cr substrate also experiences improved stability after annealing, presumably due to the formation of a protective oxide layer. Thus, with the successful choice of the supporting material and annealing temperature, we were able to create a thin film catalyst with improved activity, selectivity and stability, in contrast with commonly observed activity-stability tradeoff in catalysis.

Keywords: Pt thin films; Cr support; thermal treatment; electrooxidation; formic acid

Acknowledgment: This work was financially supported by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia (contract No 451-03- 47/2023- 01/200026) and by the Science Fund of the Republic of Serbia under grant No 7739802

n.b.: Manuscripts submitted to this Congress were not subjected to language or other corrections, except in some extreme cases. Authors are fully responsible for the content of their Abstracts.

Cover: Ladislav Cvetkovski, Faculty of Fine Arts, Ss. Cyril and Methodius University in Skopje, N. Macedonia

CIP - Каталогизација во публикација Национална и универзитетска библиотека "Св. Климент Охридски", Скопје

54(062)(048.3)66(062)(048.3)

CONGRESS of SCTM (26; 2023; Ohrid)

Book of abstracts / 26th Congress of SCTM with international participation 20–23 September 2023 Metropol Lake Resort Ohrid, R. Macedonia. - Skopje : Society of chemists and technologists of Macedonia, 2023. - 231 стр. : граф.прикази ; 21 см

Регистар

ISBN 978-9989-760-19-8

а) Хемија -- Собири -- Апстракти б) Технологија -- Собири -- Апстракти COBISS.MK-ID 61330181

