

Serbian Ceramic Society Conference ADVANCED CERAMICS AND APPLICATION XI New Frontiers in Multifunctional Material Science and Processing

Serbian Ceramic Society Institute of Technical Sciences of SASA Institute for Testing of Materials Institute of Chemistry Technology and Metallurgy Institute for Technology of Nuclear and Other Raw Mineral Materials

PROGRAM AND THE BOOK OF ABSTRACTS

Serbian Academy of Sciences and Arts, Knez Mihailova 35 Serbia, Belgrade, 18-20. September 2023. Serbian Ceramic Society Conference ADVANCED CERAMICS AND APPLICATION XI New Frontiers in Multifunctional Material Science and Processing

Serbian Ceramic Society Institute of Technical Sciences of SASA Institute for Testing of Materials Institute of Chemistry Technology and Metallurgy Institute for Technology of Nuclear and Other Raw Mineral Materials

PROGRAM AND THE BOOK OF ABSTRACTS

Serbian Academy of Sciences and Arts, Knez Mihailova 35 Serbia, Belgrade, 18-20th September 2023. **Book title:** Serbian Ceramic Society Conference - ADVANCED CERAMICS AND APPLICATION XI Program and the Book of Abstracts

Publisher: Serbian Ceramic Society

Editors: Dr. Nina Obradović Dr. Lidija Mančić

Technical Editors: Dr. Adriana Peleš Tadić Dr. Jelena Živojinović

Printing: Serbian Ceramic Society, Belgrade, 2023.

Edition: 120 copies

СІР - Каталогизација у публикацији Народна библиотека Србије, Београд

666.3/.7(048) 66.017/.018(048)

SRPSKO keramičko društvo. Conference Advanced Ceramics and Application : New Frontiers in Multifunctional Material Science and Processing (11 ; 2023 ; Beograd)

Program ; and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023. ; [editors Nina Obradović, Lidija Mančić]. - Belgrade : Serbian Ceramic Society, 2023 (Belgrade : Serbian Ceramic Society). -90 str. : ilustr. ; 30 cm

Tiraž 120.

ISBN 978-86-905714-0-6

а) Керамика -- Апстракти б) Наука о материјалима -- Апстракти

COBISS.SR-ID 122849545

Conference Programme Chairs: Dr. Nina Obradović SRB

Dr. Lidija Mančić SRB

Scientific Committee

Academician Antonije Đorđević Academician Zoran Popović Academician Velimir Radmilović Dr. Nina Obradović Dr. Lidija Mančić Prof. Dr. Reuben Jin-Ru Hwu Prof. Dr. Hans Fecht Prof. Dr. Vladimir Pavlović Prof. Dr. Bojan Marinković Dr. Takashi Goto Dr. Steven Tidrow Dr. Snežana Pašalić Dr. Nebojša Romčević Dr. Zorica Lazarević Dr. Aleksandra Milutinović-Nikolić Dr. Predrag Banković Dr. Zorica Mojović Dr. Nataša Jović Jovičić Dr. Smilja Marković Prof. Dr. Branislav Vlahović Prof. Dr. Stevo Najman Dr. Sanja Stojanović Prof. Dr. Nebojša Mitrović Dr. Suzana Filipović Dr. Darko Kosanović Dr. Milena Rosić

Organizing Committee

Dr. Nina Obradović Dr. Lidija Mančić Academician Antonije Đorđević Dr. Ivana Dinić Dr. Marina Vuković Dr. Suzana Filipović Dr. Anja Terzić Dr. Milica V. Vasić Dr. Maja Pagnacco Dr. Dalibor Marinković Prof. Dr. Nebojša Mitrović Prof. Dr. Vesna Paunović Prof. Dr. Vera Petrović Dr. Milica Marčeta Kaninski Dr. Darko Kosanović Dr. Jelena Vujančević Dr. Jelena Živojinović Dr. Adriana Peleš Tadić Dr. Nebojša Potkonjak Dr. Marko Perić Dr. Magdalena Radović Dr. Miloš Lazarević Dr. Stanko Aleksić M. Sci. Isaak Trajković

Sponsors:

Analysis - Lab equipment, Turistička organizacija Beograda, Inovacioni centar Mašinskog fakulteta, Institut za ispitivanje materijala, Institut za tehnologiju nuklearnih i drugih mineralnih sirovina 1000 and CoA-1100 can explain the differences in their activity as catalysts in investigated reaction. Both cobalt-doped alumina catalysts were found to be efficient in the degradation of Orange G in the presence of Oxone.

Acknowledgement: This research was financially supported by the Ministry of Science, Technological Development and Innovation of Republic of Serbia (Contract No: 451-03-47/2023-01/200026).

P31

Simultaneous degradation of two textile dyes Orange G and Basic blue 41

Sanja Marinović, Tihana Mudrinić, Marija Ajduković, Nataša Jović-Jovičić, Gordana Stevanović, Predrag Banković, Tatjana Novaković

University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department for Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade, Republic of Serbia

Cobalt-doped alumina catalyst was tested in peroxymonosulfate-induced degradation of two textile dyes: anionic-Orange G (OG) and cationic-Basic Blue 41 (BB). Oxone®, mixed salt containing peroxymonosulfate as an active component, was used as an oxidizing agent. Catalytic tests were performed in a thermostated reactor equipped with a mechanical stirrer. Dyes degradation was followed using a UV-Vis spectrophotometer. Characteristic peak maximum in UV-Vis spectrum was identified at λ =478 nm for OG, and at λ =609 nm for BB. Two OG concentrations were applied: 20 mg dm-3 and 50 mg dm⁻³. BB concentration was 20 mg dm-3 in all experiments. The reaction temperature was 30 °C. Apart from simultaneous dyes degradation, single-component solution degradation tests were also performed. Both dyes were found to be degradable in single dyes systems, with OG showing a higher degradation of the BB did not occur while OG was present in the system. This phenomenon can probably be attributed to the difference in the molecular structure and charge of the investigated dyes.

Acknowledgement: This research was financially supported by the Ministry of Science, Technological Development and Innovation of Republic of Serbia (Contract No: 451-03-47/2023-01/200026).