10th ISE Satellite Student Regional Symposium on Electrochemistry

2nd July 2021, online event

BOOK OF ABSTRACTS

Ш S S S ш

Croatian Society of Chemical Engineers

10th ISE Satellite Student Regional Symposium on Electrochemistry

Book of Abstracts

2nd July 2021, online event

Organizing Committee:

mag. appl. chem. Dajana Mikić (University of Zagreb, Faculty of Chemical Engineering and Technology, Croatia)

mag. ing. oecoing. Saša Marcinek (Ruđer Bošković Institute, Zagreb, Croatia)

Published by:

Croatian Society of Chemical Engineers, Zagreb, Croatia

Editors:

mag. ing. oecoing. Saša Marcinek mag. appl. chem. Dajana Mikić

ISE Regional Representative (Croatia):

dr. sc. Nadica Ivošević DeNardis

Text prepared by:

Authors, who are fully responsible for the abstracts

"10th ISE Satellite Regional Symposium on Electrochemistry" (10th ISE - SRSSE) is organized under the auspices of the **International Society of Electrochemistry** (ISE).

ISBN 978-953-6894-79-6

A NOVEL APPROACH FOR THE STUDY OF THE KINETICS OF SOL-GEL SYNTHESIS OF TITANIUM DIOXIDE NANOPARTICLES AS CATALYST SUPPORT

Katarina Božić¹, Milica Košević¹, Milana Zarić^{1,2}, Vladimir Panić^{1,2}

¹ Institute of Chemistry, Technology and Metallurgy, Department of Electrochemistry, University of Belgrade, Belgrade, Serbia

² Institute of Chemistry, Technology and Metallurgy, Center of Excellence in Environmental Chemistry and Engineering, University of Belgrade, Belgrade, Serbia <u>katarina.bozic@ihtm.bg.ac.rs</u>

Owing to a wide range of application in kinetics (photocatalysis, electrocatalysis, etc.), it is of high importance to define in details corelation between structure and synthesis of TiO₂ particles. The aim is to elucidate the kinetics of TiO₂ solid phase formation by sol-gel approach as newly-structured suitable carrier of batteries/fuel cells electrocatalytic materials.

Figure 1. The typical change of high frequency impedance of a synthesis medium during TiO₂ solid phase formation. Conditions: $c(TiCl_3) = 0.022$ mol dm⁻³, c(HCl) = 0.077 mol dm⁻³, t = 50 °C.

TiO₂ nanoparticles were synthesized from TiCl₃ precursor under different conditions (concentration, pH) in an aqueous medium. Formation of a new solid phase was continuously monitored by a dynamic conductometric measurements induced by high voltage frequency impedance sinusoidal perturbations of a conductometric cell. The particle size distributions of the obtained TiO₂ sols were characterized by the dynamic light scattering method, while the microstructure data were obtained by the scanning electron microscopy. The typical change of high frequency impedance during TiO₂ synthesis is presented in Figure 1. It was found that the process proceeds through at least five phases (I-V, Figure 1, seen as high frequency impedance decrease) of different rates and durability, which depend on synthesis conditions.