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Abstract: Biothermodynamics of viruses is among the youngest but most rapidly developing scientific
disciplines. During the COVID-19 pandemic, it closely followed the results published by molecular
biologists. Empirical formulas were published for 50 viruses and thermodynamic properties for
multiple viruses and virus variants, including all variants of concern of SARS-CoV-2, SARS-CoV,
MERS-CoV, Ebola virus, Vaccinia and Monkeypox virus. A review of the development of biothermo-
dynamics of viruses during the last several decades and intense development during the last 3 years
is described in this paper.

Keywords: thermodynamics; calorimetry; entropy; enthalpy; Gibbs energy; virus–host interaction;
SARS-CoV-2; COVID-19; Ebola virus

1. Introduction
1.1. From Thermodynamics to Biothermodynamics

There is a common opinion that thermodynamics is a scientific discipline related to
machines, engines and devices, dealing mostly with efficiency of energy transformation
and utilization. Indeed, Lazarus Carnot [1,2] and his son Sadi Carnot [3] have, through
their brilliant research, imposed such a perception into the public for over two centuries [4].
In this way, classical thermodynamics began its development. It is less widely known that,
simultaneously with classical thermodynamics, appeared biothermodynamics. Lavoisier
and Laplace [5,6] developed the first calorimeter and one of the first samples for calorimetry
was an organism—a live guinea pig. Thus, simultaneously with classical thermodynamics,
biothermodynamics started its development.

Often, the same researchers worked in the field of classical thermodynamics and
biothermodynamics. Indeed, Boltzmann [7], one of the founders of statistical thermody-
namics, has written about change in entropy in living organisms. Clausius [8–10] has laid
the theoretical foundations of classical thermodynamics, with the goal of analyzing ma-
chines. However, von Bertalanffy [11] has suggested the theory of open systems in biology.
Schrödinger in his famous book “What is Life?” discussed the thermodynamic background
of life processes [12]. Morowitz [13–15] has discussed potential controversies related to
self-assembly in organisms and emergence of life, and the second law of thermodynamics.

Growth is one of the main characteristics of organisms. The answer to the ques-
tion of what represents the driving force for the growth of organisms was given by von
Stockar [16–20]. It seems that biothermodynamics, even though it is less widely known
than classical thermodynamics, has existed in the scientific arena for as long, and has given
impressive results. Hansen analyzed whether an extended thermodynamic framework can
be used to analyze processes in organisms that involve information, such as biological evo-
lution [21–23]. Application of thermodynamics to biological evolution was also discussed
by Skene [24]. Battley has made a great contribution towards applying the quantitative
thermodynamic approach to living organisms and life processes [25–30]. Roels [16,31],
and Sandler [32,33] have also contributed to quantifying the thermodynamic properties of
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organisms. Barros has applied thermodynamics to study the growth of microorganisms in
soil ecosystems [34–36]. Maskow has applied calorimetry and thermodynamic analysis to
study the growth of microorganisms in bioreactors [37,38] and ecosystems [39,40], as well
as viruses in host cells [41]. Guosheng et al. [42] have also applied calorimetric methods to
study the multiplication of bacteriophages inside host cells.

1.2. Biothermodynamics Intersects with Biochemistry

Thermodynamic characterization of life processes has been a subject of interest for
many researchers. Von Stockar et al. [19,43] applied thermodynamics to quantitatively
analyze thermodynamic feasibility of complex metabolic pathways, such as glycolysis.
Thermodynamic analysis has been used to find accurate Gibbs energy values with activ-
ity coefficient corrections for important biological reactions, including Hexokinase reac-
tion [44], Glucose-6-phosphatase reaction and ATP hydrolysis [45], 3-phosphoglycerate
kinase reaction [46], Triosephosphate isomerase reaction [47], Enolase reaction [48], and
Glyceraldehyde 3-phosphate dehydrogenase reaction [49]. Additionally, thermodynamic
analysis was made of cellulose hydrolysis by microorganisms in the aqueous glucose solu-
tion [50]. Niebel et al. [51] found that the cellular metabolism is governed by an upper limit
in Gibbs energy dissipation, using metabolomics. Ould-Moulaye et al. [52] found Gibbs
energy changes for the reactions in glycolysis and Krebbs cycle. Kümmel et al. [53] discuss
applications of thermodynamics in metabolic network models.

The importance of thermodynamic considerations in life sciences is clearly seen from
the Gibbs energy being used to define catabolic and anabolic processes [54]. Annamalai
used the quantitative thermodynamic approach to study the metabolic processes [55,56] and
the aging of organisms [57–61]. Hayflick was among the first who related a thermodynamic
property (entropy) to the aging process in a series of papers [62–69].

1.3. From Biothermodynamics to Virothermodynamics

Viruses are the most abundant organisms: there could be more viruses than stars in the
universe [70]. There are 9,110 named species listed by the International Committee on Taxonomy
of Viruses (ICTV) [71]. Until 2019, despite the wide variety of viruses, they have been the subject
of research of microbiology, virology, biology and medicine. However, inside host cells, viruses
represent growing open chemical and thermodynamic systems [72–75]. Until 2019, elemental
composition was known only for the poliovirus [76,77]. This is a consequence of the fact that
analytical laboratories rarely have biosafety levels required for work with most viruses, as well
as the fact that viruses are difficult to isolate in sufficient amounts and purity [78]. Until recently,
viruses were not a subject of thermodynamic research. The thermodynamic properties of virus
particles and nucleocapsids were unknown.

With the appearance of the COVID-19 pandemic, various scientific disciplines at-
tempted to contribute, in the shortest time possible, to the fight against the pandemic.
Molecular biology has played an important role with the reading of genetic sequences of
SARS-CoV-2. Thermodynamics has joined the fight and in 2020, thermodynamic proper-
ties have been published for multiple viruses [79]. An analysis was made of virus–host
interactions in the cytoplasm (virus multiplication) [79]. The first empirical formula and
thermodynamic properties of the Hu-1 variant of SARS-CoV-2, as well as SARS-CoV and
MERS-CoV were published in 2020 [80]. In 2020, in parallel with the COVID-19 pandemic,
an epidemic caused by the rhinovirus occurred, while the influenza epidemic did not occur
that year. An explanation of coinfection by rhinovirus and SARS-CoV-2, and interference
between influenza and SARS-CoV-2 has been published in [81]. SARS-CoV-2 belongs to the
group of RNA viruses, which exhibit a great tendency to mutate [82]. Thus, during the 2.5
years of the pandemic, the virus has mutated several times [83–86]. The mutants suppressed
the older variants and caused new waves of infection during the pandemic. The elemental
composition and thermodynamic properties of SARS-CoV-2 variants from Hu-1 to Omicron
BA.2.75 have been published in [80,86–93]. The biothermodynamic characterization of
viruses was continued for Monkeypox, Vaccinia and Ebola viruses [94,95].
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Infectivity and pathogenicity are terms mostly used in microbiology, biology and
medicine. These terms have their physical basis and driving forces in biothermodynamics.
The basis of the infectivity of viruses is susceptibility and permissiveness (binding affinity
and multiplication rate, respectively). Antigen–receptor binding represents a chemical
reaction, similar to protein–ligand interactions [96]. The driving force for antigen–receptor
binding is the Gibbs energy of binding [86,88,91,97–101]. Thus, biothermodynamic con-
sideration and determination of Gibbs energy of binding is very important for infection
spreading [102,103]. More negative Gibbs energy of binding of new variants gave an
advantage to new strains during entry over older ones, which led to faster spreading of the
virus and shorter incubation period. Gibbs energies of binding and binding affinities of
viruses have been reported in the literature for various viruses [86–91,95,97–101,104].

To explore the interaction between a virus and its human host, it was necessary to
find thermodynamic properties for host organisms. Thermodynamic properties have
been reported for human tissues [95,105] since virus–human interactions have been of
particular importance. Thermodynamic properties of plant host organisms are reported
in [106]. Phage–bacteria interactions are often used as a model in the research of virus–host
interactions. Thus, thermodynamic properties have been determined for a large number of
bacteria [29,107–110] and bacteriophages [41,42,79].

The second virus–host interaction is in the cytoplasm. In papers [79,80], a biothermo-
dynamic mechanism was suggested for virus hijacking of host cell metabolism. The permis-
siveness represents the ability of a virus to multiply inside the host [111]. The multiplication
of a virus represents a chemical reaction of polymerization of nucleotides into nucleic acids,
and amino acids into structural and functional proteins of the virus [95]. The driving
force for these reactions is the Gibbs energy of biosynthesis [112]. After their biosynthesis,
the virus components undergo self-assembly into a new virus particle [113,114]. During
biosynthesis and self-assembly, viruses change their thermodynamic properties [115,116].
Thus, the virus life cycle represents a biological, chemical and thermodynamic process that
should be analyzed using a nonequilibrium thermodynamic apparatus [117].

Viruses represent the smallest organisms, but also belong to the most contagious
and deadly microorganisms. They spread very rapidly, often causing epidemics and
pandemics, which result in large numbers of casualties. Furthermore, there are very few
antiviral medicines. Thus, the fight against epidemics and pandemics is directed towards
epidemiological measures and the application of vaccines. However, vaccine production,
especially in the case of new viruses, requires a lot of time and resources. For example,
the vaccines against SARS-CoV-2 were awaited for a year. The ability of some viruses
to develop mutations fast leads to the need for new vaccines. Some of the available
novel vaccines have proved themselves effective for the Hu-1, Alpha, Beta, Gamma and
Delta variants. However, these vaccines are much less effective for the newer Omicron
variants due to their ability to evade the immune response. This has imposed a need
for the production of polyvalent vaccines, which also takes time and long-term testing.
Knowing the thermodynamic properties of the host and virus, as well as the application of
a mechanistic model of interactions on the cell membrane and in the cytoplasm, could, in
the future, contribute to designing new vaccines and antiviral medicines. Moreover, such
knowledge could aid in finding places and methods for vaccine application. For example,
every human tissue is characterized by a specific value of Gibbs energy of biosynthesis of
its building blocks. On the other hand, every virus variant is characterized with its own
specific Gibbs energy of biosynthesis. The ratio of these two values is the permissiveness
coefficient, which is different for various virus–host cell pairs. The result of this is that
some viruses can be synthetized in one type of cell, while in others their multiplication is
significantly slower. By choosing a tissue for vaccine application where virus growth is
slower, it is possible to give enough time to the immune system to respond to a low virus
concentration. Such a vaccine would be attenuated (live), capable of inducing an immune
response but, due to the low permissiveness coefficient, unable to cause a disease in a more
severe clinical form. The attenuation process of a vaccine based on biothermodynamic
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properties would not be performed through a long passage that requires great resources
and time, but through choosing a place of application where the virus can multiply very
slowly. Thus, one of the potential applications of biothermodynamics in virology would be
in vaccinology. Such a vaccine would not be based on empirical data but on engineering,
using biothermodynamic tools, which would help to significantly save time and resources
in the design and production of vaccines.

The aim of this review paper is to summarize the intense development of viruses in
the field of biothermodynamics during the last few decades and try to predict the directions
of the future development of the youngest scientific discipline—virothermodynamics.

2. Methods and Results

This section discusses the methodologies used in biothermodynamics of viruses and
the results they provide. First, the experimental techniques are discussed, followed by
theoretical approaches.

2.1. Experimental Approaches in Biothermodynamics of Viruses

The binding affinities of virus antigens to host cell receptors (susceptibility) have
been measured using surface plasmon resonance [118,119] and the non-competitive ELISA
approach [120,121]. Surface plasmon resonance (SPR) gives kinetic and thermodynamic
data on antigen–receptor binding, including association rate constant, kon, dissociation rate
constant, koff, and dissociation equilibrium constant, KD [118,119]. SPR is a label-free optical
technique that measures biomolecular interactions in real time by detecting reflected light
from a prism-gold film interface [118]. The non-competitive ELISA approach measures the
thermodynamic properties of antigen–receptor binding [120,121]. It represents a simple,
rapid, and reliable method for measuring dissociation equilibrium constants, KD [120,121].
The experimental results can be used to calculate other important parameters of antigen–
receptor binding, including binding equilibrium constants, KB, standard Gibbs energies of
binding, ∆BG0, binding phenomenological coefficients, LB, and binding rates, rB [88,91].

Calorimetry has been used to study viruses, including differential scanning calorime-
try (DSC), isothermal titration calorimetry (ITC) and reaction calorimetry (isothermal
microcalorimetry). Differential scanning calorimetry (DSC) measures the difference in heat
absorption rates between sample and reference during gradual heating, revealing various
thermal effects, such as phase transitions or protein unfolding [122,123]. DSC has been
used since the 1970s in research on viruses, including measurements of energetics of virus
capsid self-assembly and denaturation [124,125], virus particle structure [126,127], thermal
stability [125,128–130], virus identification [124], virus denaturation [131,132], entry into
host cell [133,134], capsid self-assembly [135,136] and vaccine development [137,138].

While DSC performs measurements by changing temperature, isothermal titration calorime-
try (ITC) measures heat released or absorbed when a reagent is titrated into a solution at constant
temperature [122,123]. ITC was also applied to study a wide range of phenomena related to
viruses, such as virus adsorption and disassembly [139], influence on metabolism and cell
cycle [140,141], apoptosis inhibition [142,143], virus structure and entry into host cells [144], nu-
cleocapsid self-assembly [145], inactivation [146,147], immune response evasion [148], antiviral
therapy development [149–152], vaccine development [153], etc.

Reaction calorimetry, or isothermal microcalorimetry, measures heat released or ab-
sorbed during a chemical reaction, usually at constant temperature (without titration like in
ITC) [122,123]. Reaction calorimetry has been applied to study virus multiplication inside
host cells [42,154–156], phage action against bacterial biofilms [155,157–162], phage-bacteria
interactions [163,164], phage transition from lytic into lysogenic cycles [41], antiviral and
phage therapy [165–167], and influence on marine ecosystem metabolism [168].
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2.2. Theoretical Approaches in Biothermodynamics of Viruses

The thermodynamic properties of viruses can be calculated using biothermodynamic
methodology. Thermodynamic properties of virus biosynthesis can be found from virus
elemental composition in three steps:

(1) Empirical formula;
(2) Thermodynamic properties of live matter;
(3) Thermodynamic properties of biosynthesis.

The first step is to find empirical formulas of virus live matter. This can be achieved
using the atom-counting method [78], which gives elemental composition of viruses using
widely available data on genetic sequences [169–173], protein sequences [169,170,174] and virus
morphology [78]. The second step is to calculate thermodynamic properties of virus live matter,
using predictive biothermodynamic models [78]. Elemental composition of virus live matter can
be used to find its thermodynamic properties using the Patel–Erickson equation [28,88,107,175],
Battley equation [26,88,107] and Hurst–Harrison equation [176,177]. The third step is to use
elemental composition of live matter to construct biosynthesis reactions for the viruses [79,88].
The biosynthesis reactions are combined with thermodynamic properties of live matter to find
thermodynamic properties of biosynthesis [79,88].

Phenomenological equations are an important tool, relating thermodynamic and
kinetic properties of processes [17,178,179]. Phenomenological equations are intuitive and
simple to apply, stating that the rate of a process is proportional to its thermodynamic
driving force—Gibbs energy [178,179]. A phenomenological equation for a chemical process
has the general form [178,179]

r = − L
T

∆G (1)

where r is the rate of a chemical process, T is temperature, while ∆G is Gibbs energy change
of the process. L is a constant known as phenomenological coefficient, and is specific
for each process. Phenomenological equations can be applied to both antigen–receptor
binding and virus multiplication inside host cells [88,91]. In the case of antigen–receptor
binding, the binding phenomenological equation relates binding rate, rB, and Gibbs energy
of binding, ∆BG:

rB = − LB
T

∆BG (2)

where LB is the binding phenomenological coefficient [88,91,180].
Similarly, the biosynthesis phenomenological equation relates the rate of biosynthesis

of virus components, rbs, to the Gibbs energy of biosynthesis, ∆bsG:

rbs = − Lbs
T

∆bsG (3)

where Lbs is the biosynthesis phenomenological coefficient [88,95,180]. Phenomenological
equations have also been applied to analyze growth of bacteria [17,178].

Experimental work with viruses can sometimes require high biosafety levels. How-
ever, there are few laboratories that work on calorimetric measurements that possess the
appropriate biosafety level [78]. Time, especially in circumstances of epidemics/pandemics
caused by dangerous viruses, plays a very important role in suppressing infections. Thus,
computational methods (especially since the beginning of the COVID-19 pandemic) have
been gaining in importance [181], since they have proved themselves to be a fast and accu-
rate source of information on kinetics and the biothermodynamic background of virus–host
interactions. Three-dimensional-QSAR modeling is effective for predicting novel inhibitors
from an existing scaffold and defining the influence of chemical properties on bioactivi-
ties [181]. Combinatorial molecular docking provides active site conformational details,
while the inclusion of other dynamical methods would improve predictive capability [181].
Molecular docking can be used to predict binding affinities [181]. Machine learning al-
gorithms have been used for the research of virus–host interactions, including immune
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responses [182]. Molecular dynamics and 3D-QSAR have been used to study binding mech-
anisms of the Hepatitis B virus [183]. Computational approaches, such as docking, have
been applied extensively to study protein–protein interactions, since experimental data is
often limited [184]. Computational approaches have been used to characterize SARS-CoV-2
variants of concern, including the effect of mutations on the binding affinity of the receptor-
binding domain (RBD) to human angiotensin-converting enzyme 2 (hACE2) [185,186].
Moreover, computational approaches have been used to identify antibodies that neutralize
SARS-CoV-2 and other virus particles [187,188]. All these methods give useful information
that can be, using biothermodynamic methodology, applied for finding the driving force
for antigen–receptor binding—Gibbs energy.

3. Discussion

The path from thermodynamics to biothermodynamics was very short. The researchers
who laid the foundations of classical thermodynamics were also the first to apply them
to living organisms [5,6]. The road from biothermodynamics to biothermodynamics of
viruses, virothermodynamics, has been much longer. It lasted 150 years. In that period, the
basis was laid for experimental measurements on virus samples, as well as the methodology
for theoretical analysis. Thus, the opportunities for virus research offered by biothermo-
dynamics are great. However, the limiting factor for research represents the problem of
providing biological samples of sufficient size and adequate purity, high sample prices, as
well as finding laboratories with the required biosafety level and personnel ready to work
on biothermodynamics [78]. Having in mind that the discipline is really young, biothermo-
dynamics courses are rarely offered at universities in Europe, even though it seems that
students are showing interest for this discipline. In this early period of development of
biothermodynamics of viruses, of particular importance are results of molecular biology,
which have made the data on sequences of nucleic acids and proteins widely available, as
well as the work of virologists who made available data on virus morphology.

In the introduction, it was mentioned that viruses represent the most abundant living
organisms. Moreover, there is nearly 10 000 different virus species. However, during
the last few years, empirical formulas have been determined for less than 50 species,
while thermodynamic properties are known for less than 70 species. Various virus species
(and variants) are characterized by specific empirical formulas. For example, the Hu-
1 variant (wild type) of SARS-CoV-2 is characterized by its specific empirical formula
CH1.6390O0.2851N0.2301P0.0065S0.0038 [80,112]. The empirical formula of the Ebola virus is
CH1.569O0.3281N0.2786P0.00173S0.00258 [95]. This difference in empirical formulas can be used
for the identification of various virus species and their variants, using single particle
inductively coupled plasma mass spectroscopy analysis (SP-ICP-MS) [93] or the atom-
counting method [78]. Moreover, each variant of SARS-CoV-2 is characterized by its own
empirical formula [80,88,89,112].

Panta rhei; the world is moving and changing. The natural driving forces are hidden
in the objective world and the human body. What are the physicochemical forces that
drive life? Organisms perform biological and chemical processes. The driving force of all
chemical processes in animate and inanimate matter is Gibbs energy [17,178,179,189,190].
This is why Gibbs energy represents the driving force for interactions of organisms with
their environment [16–18,20,191].

Viruses represent obligate intracellular parasites [192]. Thus, the environment of
viruses during their life cycle is animate matter—host cell. Therefore, the virus interacts
with its host cell at the membrane, by binding to specific receptors on the host cell sur-
face [193] and entry of the host cells, as well as inside the cell in the cytoplasm, performing
replication, transcription, translation, self-assembly and maturation. After maturation,
new virions leave the cell, leading to its damage. All these phenomena represent chemical
reactions or physical processes. Antigen–receptor binding represents a chemical reac-
tion similar to protein–ligand interactions [91,96]. Transcription represents the process
of transmission of information, based on polymerization of nucleotides into RNA [194].
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Translation represents a process of conversion of information from the RNA code into a
protein code, based on a polymerization reaction of amino acids [195]. Both these process,
as well as replication of nucleic acids [196,197] are driven by Gibbs energy of biosynthesis.
Biosynthesis reaction of structural and functional proteins of cells and biosynthesis of virus
components are competitive. According to equations (1) and (3), reaction rate depends on
Gibbs energy of biosynthesis. During competition, the reaction that occurs faster has an
advantage. This is the way in which a virus hijacks the host cell’s metabolism. In order to
predict the outcome of this interaction, it is necessary to know thermodynamic properties
(Gibbs energy, entropy and enthalpy) of both the virus and its host cell.

The permissiveness coefficient represents the ratio of rates of biosynthesis of virus
components and host cell components. A permissiveness coefficient greater than one
indicates the advantage in synthesis of virus components, leading to a successful viral life
cycle inside the host. The permissiveness coefficient, P, is given by the equation

P =
rbs(virus)
rbs(host)

=
∆bsG0(virus)
∆bsG0(host)

(4)

where rbs represents the biosynthesis rate, while ∆bsG0 is standard Gibbs energy of biosyn-
thesis [95]. A similar method is used in pharmacology, in research on the interactions of
two medicines (e.g., synergistic, antagonistic, or neutral interactions), during simultaneous
application on cells [198]. Basically, interaction between the medicine and the cell, and
the virus with its cell represent the same process, similar to protein–ligand interactions.
Thus, there is a similar approach in pharmacology and biothermodynamics. Since the
processes are similar, they obey the same chemical and biothermodynamic laws, hence the
similarity in approach and applied equations. By comparing permissiveness coefficients for
two different viruses (or virus variants) for the same host tissue, it is possible to conclude
whether there will be coinfection or interference during simultaneous contact with both
viruses by the same host. This practical application can be of use to epidemiologists and
infectologists since it is not rare for two viruses to appear in the same population at the
same time and in the same place. If permissiveness coefficients of two viruses are similar for
the same tissue, then the probabilities of virus multiplication will be similar. Such was the
case with SARS-CoV-2 and rhinovirus [81]. This resulted in the simultaneous occurrence of
COVID-19 pandemic and an epidemic caused by the rhinovirus. Additionally, a similar
observation was made with epidemics caused by influenza and parainfluenza viruses. On
the other hand, if there is a significant difference in permissiveness coefficients between two
potential causes of epidemics, then one epidemic will suppress the other. This happened in
the winter of 2020/21 and 2021/22, when the influenza epidemics did not occur during the
COVID-19 pandemic [81].

It is obvious that the biothermodynamics of viruses are able to offer a wide variety
of important information, useful first of all to virologists, microbiologists, biologists, epi-
demiologists and infectologists. Knowing thermodynamic properties and mechanistic
models that are developed in biothermodynamics can shed more light on basic processes
from the domains of biophysics and chemistry, which represent the basis for biological
phenomena. The immune response (humoral) implies antigen–antibody reaction. The
antigen–antibody reaction is similar to protein–ligand interactions. Thus, the driving force
for the antigen–antibody interaction is the Gibbs energy of this interaction. Cellular im-
mune response is related to mobilization of immune cells and, thus, increase in number.
This results in growth. Growth, like with other cells, represents a biological and biothermo-
dynamic phenomenon, driven by Gibbs energy of growth. Thus, it is necessary to know the
thermodynamic properties of immune cells. After an extensive search of the literature, the
author could not find data on the thermodynamic properties of lymphocytes, leukocytes
and macrophages. Infection is a complex biological process, which, except for the infective
agent (microorganism), involves a host cell/tissue and immune cells. To reveal the thermo-
dynamic basis of infections in full, it is necessary to know all 3 elements (thermodynamic
properties of microorganisms, immune system and host cells). Biothermodynamics is a
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young discipline and obviously faces many challenges and a great body of work that needs
to be realized. The effort on the development of biothermodynamics seems justified since it
can greatly help in explanation of pathogeneses of many diseases that occur as a result of
microorganism–host interactions.

Time evolution of viruses can be followed through change in Gibbs energies of binding
and biosynthesis [180]. Viruses exhibit a tendency to mutate. RNA viruses exhibit a greater
tendency to mutate than DNA viruses [82]. Mutations lead to change in the sequence
of nucleotides in nucleic acid, information contained in the virus nucleic acid, but also
change in empirical formula of the virus and its thermodynamic properties, as well as the
conformational change in the virus antigen. Change in one or several nucleotides during
mutations leads to changes in one or several amino acids in the viral antigen, which in
turn leads to change in elemental composition. Change in elemental composition leads to
change in thermodynamic properties and conformational changes in the virus antigen. The
changes that lead to more negative Gibbs energy give an advantage to the new virus strain.
Mutations in viruses occur significantly more often than those that have caused pandemic
waves. Many mutations have most likely proved themselves unsuccessful and such strains
have disappeared from the population. This means that Gibbs energy of binding and
biosynthesis, as well as conformational changes in the antigen, did not give an advantage
(e.g., Gibbs energies of binding and biosynthesis became less negative). During time and
acquisition of new mutations, it is possible to follow changes in thermodynamic properties
of viruses. A tendency was observed in the temporal evolution of viruses towards more
negative Gibbs energy of binding [180]. This can be related to the prediction of the theory
of evolution that viruses increasingly adapt to their host with time [180].

4. Conclusions

Biothermodynamics of viruses is among the youngest scientific disciplines. However,
appearance of new viruses, their rapid mutation, which can lead to epidemics and pan-
demics with a great number of cases and casualties, have given an impulse for the very
rapid development of biothermodynamics of viruses. Knowing biothermodynamic proper-
ties can give useful information to epidemiologists and infectologists about the mechanism
of virus–host interaction and virus–virus competition. Knowing empirical formulas of
viruses is significant because it allows fast and accurate identification of known viruses
or detection of new viruses or variants. Moreover, phenomenological equations, which
belong to nonequilibrium thermodynamics, have proven themselves an important tool for
analysis of rates of antigen–receptor binding and rates of virus multiplication inside host
cells. The permissiveness coefficient could be useful during the estimation of the degree of
damage to host tissues, caused by the multiplication of viruses, as well as the assessment of
the outcome of virus–virus competition during the simultaneous presence of two viruses
or virus variants in the same time and the same place.
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