Geological Quarterly, 2023, 67: 4
DOI: http://dx.doi.org/10.7306/gq.1675

" Researon

Early Paleozoic Cenerian (Sardic) geodynamic relationships
of peripheral eastern north Gondwana affinities: revisiting the Ordovician
of the Getic/Kuc€aj nappe (eastern Serbia)

Darko SPAHIC" *, Pavle TANCIC? and Dejan BARJAKTAROVIC'

1 Geological Survey of Serbia, Rovinjska 12, 11000 Belgrade, Serbia; ORCID: 0000-0002-5832-0782 [D.S.]

2 University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department for Catalysis and Chemical Engi-
neering-National Institute of the Republic of Serbia, Njegoseva 12, 11000 Belgrade, Serbia; ORCID:
0000-0002-4024-710X [P.T.]

Spahi¢, D., Tanci¢, P., Barjaktarovi¢, D., 2023. Early Paleozoic Cenerian (Sardic) geodynamic relationships of peripheral
eastern north Gondwana affinities: revisiting the Ordovician of the Getic/Ku€aj nappe (eastern Serbia). Geological Quarterly,
67: 4, doi: 10.7306/gq.1675

Regional tectonic synthesis suggests that a segment of the bipartite eastern Gondwana-type Carpathian-Balkan
nappe-stacked Getic/Ku€aj/Supragetic basement (eastern Serbia) experienced Cambro-Ordovician Cenerian (Sardic)
accretionary-type deformation. The Ordovician basement of the Alpine Getic/Kucaj nappe exposes an earlier-mapped shal-
low-marine transgressive-type Fe-silicate-rich ironstone sequence. The Ordovician ironstone is used as second-order evi-
dence of a hitherto untraceable tectonically-driven unconformity. Early Paleozoic compression is consistent with the
controversial latest Cambrian to intra-Ordovician Cenerian (Sardic) interval, documented by (i) a 488 Ma metamorphic event
and avilable detrital zircon data (Serbo-Macedonian gneissic unit), (ii) a deformed Lower Ordovician Getic/Kucaj brachiopod
assembly, and (iii) an intra-Ordovician unconformity dividing the Supragetic basement/’Vlasina complex”. The data further
imply that mafic gabbro-dominating sills, cropping out in the northern Getic/Ku€aj unit, are consistent with Ordovician
back-arc activity. The Getic/Kucaj gabbro is Ordovician in age, piercing a Neoproterozoic—Cambrian (Lower Ordovician)
Supragetic/”’Vlasina complex”, overlain by a transgressive Silurian—-Devonian sedimentary sequence. The emergence of Or-
dovician mafic intrusions reflects submarine volcanism, while deep-water redox conditions were capable of a sustained sup-
ply of Fe (similar to Sardinia). In terms of tectono-palaeogeographic reconstructions, the origin of Ordovician shortening and
mafic volcanism is often challenged. The latter is broadly analogous with the embryonic eastern Rheic Ocean, correspond-
ing additionally to the Armorican spur and related intra-continental magmatism.
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INTRODUCTION inclusive development of high-strain deformation (e.g., Murphy
et al., 2008; van Staal and Hatcher, 2010; Balintoni et al., 2010,
2011, 2014; Zurbriggen, 2014, 2017a,b; Cocco and Funneda,
2017; Maino et al., 2019; Stephan et al., 2019; Spahi¢ et al.,

2021; Cocco et al., 2022). In addition to a number of overlap-

Displaced supercontinental margins are places capturing
imprints of past tectonothermal activities, often consistent with

peripheral orogenic-type zoning, recurrent back-arc lithospheric
fragmentation and terrane dispersal (e.g., Murphy et al., 2001;
van Staal and Hatcher, 2010; Meinhold et al., 2013; Merdith et
al., 2017). The Lower Paleozoic bipartite north Gondwana pe-
riphery may be either genetically linked with a Cambro-Ordovi-
cian active margin (Zurbriggen, 2017a, b) or simply with
back-arc extension (Stephan et al., 2019). The Cambro-Ordovi-
cian interval was, however, tectonically critical for north Gond-
wana, characterized by a complex interplay of plate tectonic
processes: Ordovician arc-supercontinent collisions, rifting,
(palaeo)northwards drift of peri-Gondwanan terranes, formation
of unconformities, metamorphism, (bimodal) igneous activity,
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ping lithospheric-scale processes, the Ordovician of north
Gondwana is further complicated as it combines (i) astronomi-
cally induced Earth-scale cooling episodes with the rather local-
ized Middle and Late Ordovician north Gondwanan glaciations
(Young, 1989; Fang et al., 2019), (ii) a phase of massive iron-
stone production (Guerrak, 1988, Young, 1992; Trela, 2008;
Pufahl et al., 2020; Dunn et al., 2021, and references therein),
and (ii) the immense inflow of Pan-African orogen-derived
clastic material indicates transport from a distant hinterland
(e.g., Bahlburg et al., 2009; Meinhold et al., 2013; Avigad et al.,
2017; Benayad et al., 2019).

The post-Cadomian (e.g., Linnemann et al., 2007) and
post-Pan-African (Kroner and Stern, 2005) dominantly
shelf-controlled bipartite north Gondwanan Cambrian—Ordovi-
cian overstep sequence, experienced transient Cenerian
(Sardic) shortening. The tectonothermal event involved bi-
modal magmatism with an intervening “convergence” culminat-
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ing in the Ordovician (e.g., Kroner and Romer, 2013;
Zurbriggen, 2015, 2017a,b; Alvaro et al., 2020; Oriolo et al.,
2021, Avigad et al., 2022; Cocco et al., 2022). The Cenerian
(Sardic) contraction was either influenced by transpressional
movements along the extensive shelf (Stephan et al., 2019) or,
in an alternative palaeogeographic reconstruction, is consistent
with reattachment of near-shore laterally transferred
peri-Gondwanan ribbon-like arc terrane(s) (Stampli and Borel,
2002; von Raumer et al., 2002; van Staal and Hatcher, 2010).
The contraction and subsequent uplift of the shelfal area pro-
duced an angular Ordovician unconformity, best recorded in
Sicily, the Alps and the Pyrenees (Martini et al., 2001;
Zagorevski et al., 2006; Casas, 2010; Oggiano et al., 2010;
Cocco and Funneda, 2017; Puddu et al., 2018; Maino et al.,
2019; Hollocher et al., 2022). Other than in southern Europe,
the Cenerian (Sardic) unconformity has received little attention
in the literature. The flanking Cenerian (Sardic) underexplored
involvement likely affected the North African cratonic basins
(e.g., Tawadros, 2012; Le Heron et al., 2012), and the rest of
the drifted Central European basement terranes (e.g., Brittany,
Saxo-Thuringia and the Tepla Barrandian Unit, as well as base-
ment terranes incorporated into the Alpine orogen; Fig. 1A, B —
green-grey colour, blue colour, respectively). In addition, field
evidence of a Cenerian (Sardic) compressional record in Cen-
tral Variscan European basements is either absent, or is in a
high strain domain likely occurring as orthogneisses with Ordo-
vician 480—450 Ma protolith (e.g., Abalos et al., 2002; Franz et
al., 2005; Kroner and Romer, 2013; Avigad et al., 2022). A simi-
lar situation is present in the incorporated Carpathian-Balkan
pre-Variscan and Variscan basement edifices of Alpine orogen
(e.g., Yanev et al., 2000; Krautner and Krsti¢, 2002; lancu et al.,
2005; Seghedi et al., 2005; Krsti¢ et al., 2008; Balintoni et al.,
2009, 2014; Kounov et al., 2012; Bonev et al., 2013; Anti¢ et al.,
2017; Plissart et al., 2017, 2018; Spahi¢ and Gaudenyi, 2018;
Spahi¢ et al., 2018, 2019a, 2021; Zak etal., 2021; Ferretti et al.,
2022; Figs. 1C, 2 and 3).

The Lower Paleozoic tectonic perturbations of (eastern) pe-
ripheral north Gondwana generated three stages of the
Cenerian (Sardic)-related volcanism (a typical location is Sar-
dinia; Oggiano et al., 2010; Maino et al., 2018; Stephan et al.,
2019; Oriolo et al., 2021; Avigad et al., 2022):

— intermediate and felsic volcanic rocks (491-479 Ma)

bounded at the top by the Sardic unconformity;

— calc-alkalic rhyodacites of ~465 Ma, corroborating the
presence of bimodal Mid-Ordovician arc volcanism;

— alkalic metaepiclastites  recorded  within  the
post-Caradocian transgressive sequence (440 Ma), re-
lated to the rifting and collapse of the Mid-Ordovician
volcanic arc.

In this respect, the Getic/Ku€aj and Supragetic nappes in-
vestigated, i.e., basement units of eastern Serbia, may include
relevant evidence of here tested:

— link between the geodynamic evolution of recently iden-
tified dominantly peraluminous Cenerian (Sardic) type
gneisses of the Serbo-Macedonian Unit (Spahic et al.,
2021), and the nearby Getic/Ku€aj/Supragetic
Cambro-Ordovician basement units;

— evidence of Cambrian—Ordovician contraction and uplift
may include the tectonically deformed brachiopod as-
sembly earlier discovered within a meta-clastic se-
quence (Krsti¢c and Maslarevic, 1998). These deformed
brachiopods are consistent with a Lower Ordovician
age, positioned stratigraphically beneath Mid-Ordovi-
cian intra-layered ironstone, chemically described also
by Mrvaljevic (1956), and stratigraphically by Ferretti et

al. (2022). The ironstone sequence led to the idea to use
it as an auxiliary marker of unconformity, which can be
dated from the latest Cambrian to the Middle Ordovician
or the pre-Hirnantian interval (previously mapped by
Zavod za geoloSka i geofizicka istrazivanja, 1961-1968;
Barjaktarovi¢, 2007; also recorded in the analogous
Svoge unit, western Bulgaria; Gutierrez-Marco et al.,
2003; Ferretti et al., 2022, and references therein);

— Ordovician back-arc extension or an inner cratonic Or-
dovician opening of a semi-restricted Gondwanan sea-
way (gabbroic rocks of pre-Silurian age recorded in the
northern Getic/Ku€aj zone; near the Danube River;
Bogdanovi¢ et al., 1978).

However, the magnitude of the extensional back-arc opening
of the eastern Rheic/Moldanubian/Palaeotethys Ocean, or the
actual amount of displacement from the Gondwana mainland,
remains unknown (Z&k and Slama, 2018). To make matters
more  difficult, the  Neoproterozoic-Cambro-Ordovician
Getic/Ku€aj/Supragetic sequences investigated underwent both
Variscan and Alpine tectono-metamorphism (Figs. 3 and 4).

In this review paper, by applying conventional regional geo-
logical and stratigraphic methods in combination with the avail-
able literature sources, we test a Cambro-Ordovician
palaeogeographic and tectonic relationship between a segment
of far-travelled peri-Gondwanan terranes and the Gondwana
mainland. The Gondwanan Armorican inheritance of the
Getic/Kucaj unit is documented exclusively within its regional
Carpathian-Balkan Ordovician analogue referred to as the
Svoge unit in Bulgaria (Gutierrez-Marco et al., 2003; Yanev et
al., 2006; Chatalov, 2017; Georgiev et al., 2021, 2022). A lim-
ited number of regional studies have not discussed Fe-chlorite
(i.e. chamosite) and siderite authigenesis and diagenesis-re-
lated unconformity, and their linkage to the north Gondwana
shelf (e.g., Matheson et al., 2022). Commonly, the stratigraphic
distribution of the Ordovician ironstones of North Africa corre-
late with the intervals between higher sea levels, separating
transgressive systems tracts which overlie maximum flooding
surfaces i.e., marine transgression as accommodation in-
creased from lowstand conditions (Young, 1992; also in Pufahl
et al., 2020). Thus, the frequent occurrence of Middle—Upper
Ordovician chamosite- and siderite-bearing ironstones within
the Getic/Kucaj/Svoge nappes of the Carpathian-Balkan belt
(Veselinovi¢, 1975; Krstic and Maslarevi¢, 1998; Gutierrez-
Marco et al., 2003; Yanev et al., 2006; Figs. 2 and 3) is alterna-
tively used as a proxy for (i) unconformities (transgressive initial
deposit above an unconformity; Young, 1992); and (ii) together
with evidence of Ordovician mafic magmatism supplying
ferruginous water as a possible source of iron (e.g., Micke and
Farshad, 2005; Oggiano et al., 2006; Pufahl et al., 2021; Mathe-
son et al., 2022), as an alternative palaeogeographic and tec-
tonic reconstruction of the Getic/Ku€aj nappe in further portray-
ing a narrow palaeoceanic seaway.

REGIONAL-TECTONIC OUTLINE

The entire region of south-east Europe and the
north-east-East Mediterranean, including its Carpathian-Bal-
kan-Hellenic sector (Fig. 1B, C), illustrates a very complex inter-
action of several orogenic accretionary-type events (e.g.,
Dimitrijevi¢, 1997; Krsti¢ and Krautner, 2003; lancu et al., 2005;
Seghedi et al., 2005; Karamata, 2006; Schmid et al., 2008;
Zulauf et al., 2015). The youngest late Alpine or Neoalpine, of
extensional-type, occurred in the Oligo-Miocene (Marovi¢ et al.,
2007). Oligo-Miocene extension followed a precursor (i)
Eoalpine event (Late Cretaceous—Paleogene; Dimitrijevic,
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Fig. 1A — the Alpine domain of Europe (Gauss—Kriiger to WGS84 coordinate transformations (svemir.co); B — distribution of
Avalonian vs. Cadomian vs. Cimmerian microcontinents, embedded into what is now Western, i.e, Central and South-east Europe
(Spahi¢, 2022a, b), respectively (inset from Topuz et al., 2021, significantly modified). Modification includes detrital zircon data
taken from Zlatkin et al. (2014, 2017); Spahi¢ and Gaudenyi (2018, and references therein). The Alpine orogeny, in particular
Eoalpine compression, reworked the precursor Variscan configuration of the Carpathian-Balkan sector that include the exposed
north Gondwanan Armorican basement elements. The exposed polymetamorphic terranes include the Serbo-Macedonian Unit as a
segment of the dispersed Lower Paleozoic Cenerian margin (similar to the Alps i.e., basement belonging to the Strona—Ceneri
zone). The Ku€aj area investigated and its sedimentary Ordovician sequence are to the east of the documented Cenerian terrane or
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maps-for-free.com)
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The position in the “Beljanica greenschist” which are of the same age as the Supragetic basement (i.e. underlying the Ordovician
sequence investigated). The main Ordovician sedimentary sequence gradually passes into the Silurian, which is not the case in NE
Serbia (Bogdanovic et al., 1978). Spatial position of the ironstone beds. Further explanations are within the text

1997; Spahi¢ and Gaudenyi, 2022), preceded by (ii)
“Eocimmerian docking” or an “Early Cimmerian” compressional
event in the Late Triassic (Zulauf et al., 2015; Spahi¢ et al.,
2019b; Spahi¢, 2020a, b). (iii) The early Alpine event was an
extensional episode (latest Permian—Triassic—Jurassic) that
appeared after (iv) protracted Variscan amalgamation, linking
late Carboniferous events with igneous activity in the Early
Permian (Medaris et al., 2003; Winchester et al., 2006;
Jovanovic et al., 2019). (v) The Variscan precursor is (vi) the
Cenerian or “Sardic” event (sensu Zurbriggen, 2015, 2017a, b,
Stephan et al., 2018, 2019) which reached its peak
(peraluminous igneous activity, high strain deformation, and
anatexis) during latest Cambrian—Ordovician (Serbo-Macedo-
nian Unit; Zagorchev et al., 2012; Spahic et al., 2021). Caledo-
nian involvement has not yet been recorded. Cenerian involve-

ment was initially suggested for the Serbo-Macedonian Unit
gneisses, imprinted by a very interesting lastest Cambrian
488 Ma metamorphism (Balogh et al., 2004).

The involvement of a Mid-Ordovician compressional event
within the wider Carpathian-Balkan basement terranes was first
suggested by Golonka et al. (2005), Haydoutov et al. (2010),
and Balintoni et al. (2011). This Mid-Ordovician event was origi-
nally referred to as the “early Caledonian orogeny” (Balintoni et
al., 2011). The Carpathian-Balkan basement terranes which
were exposed to Cambro-Ordovician accretion or “orogeny” un-
derwent tectonic transport to become an exotic Variscan base-
ment collage in the aftermath (e.g., Zelazniewicz et al., 2004;
Carrigan et al., 2005; Oczlon et al., 2007; Kroner and Romer,
2013; Zulauf et al., 2014; Anti¢ et al., 2017; Zak and Slama,
2017; Fig. 1A, B). As a result, a large segment of north Gond-
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wana was embedded within the eastern Variscan orogen to be-
come a western Moesian Dacides/Southern Carpathian or
Carpathian-Balkan sector (e.g., Balintoni and Balica, 2013;
Balintoni et al., 2014; Anti¢ et al., 2016, 2017; Chatalov, 2017;
Spahi¢ and Gaudenyi, 2018; Abbo et al., 2019; Ferretti et al.,
2022; Figs. 1B, C and 2). Following the involvement of the
Variscan basement in the Alpine-Himalayan orogeny, this
lithospheric-scale fragment was structurally rearranged to be-
come a collage of basement components of the western Al-
pine—Himalaya collisional orogen (Dimitrijevi¢, 1997; Krsti¢ and
Krautner, 2003; lancu et al., 2005; Karamata, 2006; Schmid et
al., 2008; Plissart et al., 2018). The western Carpathian-Balkan
inliers were structurally stacked into a sliced Alpine basement
system placed to the west of the Moesian micro-continent (e.g.,
Sandulescu, 1984; Yanev et al., 2006; Plissart et al., 2018;
Spahié and Gaudenyi, 2018; Spahi¢ et al., 2019a,b; Zak et al.,
2021). These inliers of pre-Alpine basement terranes crop out
across the Danube River from the Southern Carpathians of SW
Romania into eastern Serbia (Krsti¢c and Krautner, 2003; lancu
et al., 2005; Fig. 2). These include (sensu Krsti¢ and Krautner,
2003; Fig. 2): the Vrska Cuka-Miro& Unit (Lower Danubian); the
Stara Planina Pore¢ Unit (Upper Danubian); the Kucaj Unit
(Getic); the Luznica Unit (West Kraishte); the Ranovac-Vlasina
Unit (Supragetic); and the Serbo-Macedonian Unit. Towards
the east of the central Serbo-Macedonian Unit is the Rhodope
Massif, which records imprints comparable to those of the Or-
dovician Cenerian/Sardic bimodal Middle-Late Ordovician
(Bonev et al., 2013).

The Getic/Kuc¢aj nappe/unit (in Alpine configuration) investi-
gated incorporates a sedimentary cover of Ordovician to Car-
boniferous age (Krsti¢ and Krautner, 2003; Antic et al., 2016).
However, the presence or surface exposure of the Ordovician
sequence is not consistent across eastern Serbia; in most
cases Ordovician sequences are absent. Limited in size yet
widespread gabbroic rocks of the post-Cambrian and pre-Silu-
rian (likely of late Lower Ordovician age) were previously
mapped across the northern Getic/Kucaj zone (near Danube
River; Bogdanovic et al., 1978; Fig. 2). The central segment of
the Getic/Kucaj Ordovician sequence (Fig. 3) includes coarsely
crystalline gabbros (likely Mesozoic in age; Mrvaljevic, 1956).

APPROACH, METHODOLOGY AND (EASTERN)
NORTH GONDWANAN AFFINITY

In the literature of the last 50 years, a few papers consider
the complex issue of the Ordovician (bio)stratigraphy and, in
particular, the Early Paleozoic palaeogeography and tectonics,
of the Alpine Carpathian-Balkan sector. Earlier authors col-

<
<

lected dominantly biostratigraphic data, comparing the Ordovi-
cian succession with documented global examples, often of lo-
cal character. Nevertheless, important field observations in-
cluding of the Kucaj Mt. ironstone and its position near
Klencuski potok is taken from the available local literature
(Mrvaljevi¢, 1956; Krsti¢ and Maslarevi¢, 1998; also in Ferretti
et al., 2022; Fig. 3): namely, irregular lenses of chamosite and
siderite several meters thick, sandwiched between underlying
sandstones and overlying metapelitic rocks (Krstic and
Maslarevi¢, 1998). The ironstone is commonly associated with
dolomite, calcite, sheridanite, and in places quartz sand. The
chamosite is green and occurs in micronodular aggregates
(Krstic and Maslarevi¢, 1998). Accumulations resembling
pseudo-ooids are rare, whereas siderite occurs as
cryptocrystalline aggregates, locally in the form of spherolites.
The Kucaj Mt. ironstone has a granular Fe-silicate-rich struc-
ture, with dominant iron and manganese, and with trace tung-
sten (Mrvaljevi¢, 1956). Some recent studies (Chatalov, 2017,
Georgiev et al., 2021; and for the Serbo-Macedonian Unit; Anti¢
et al., 2016, 2017) have indicated an “Armorican Terrane As-
semblage” inheritance, hinting at Cenerian (Sardic) involve-
ment (Spahi¢ et al., 2021). In addition to revisited stratigraphy
and available tectonic-palaeogeographic models, scarce Lower
Paleozoic magmatic and detrital zircon record data (e.g.,
Deleon et al., 1972; Anti¢ et al., 2016; Siegesmund et al., 2018;
Abbo et al., 2021; Georgiev et al., 2021, 2022) are reassessed
in our study.

In the Kuc€aj Mountain, vertical and lateral facies changes
characterizing a complete Ordovician succession are described
from several rather poor exposures. Lithofacies composing these
presumably Armorican edifices were logged in detail in road cuts
and quarry walls (Barjaktarovi¢, 2007), and are described in the
following section. However, a large part of the central Ordovician
Getic/Ku€aj Mt. sequence is unfossiliferous. Thus, in addition to
reassessment of the superpositional relationships of displaced
strata (Krsti¢ and Maslarevic, 1998; Fig. 4A), we use the position
of the ironstone as (i) an auxiliary intra-formational tectonic marker
(Veliki Malinik area of Ku€aj Mt.; Krstic and Maslarevi¢, 1998;
Fig. 3). The presence of the ironstones within the early Middle Or-
dovician sequence further indicates (ii) shallow or subaerial re-
working of large amounts of underlying Fe-bearing rocks (e.g.,
Matheson et al., 2022). Thus, the ironstone sequence was also
used (jii) to provide constraints on possible mafic oceanic crustal
Fe-sources, which are consistent with the development of Ordovi-
cian near-marginal north Gondwanan seaways (e.g., Sardinia —
Oggiano and Mameli, 2006; Matheson et al., 2022). Finally, we
discuss the two main tectono-palaeogeographic Cambrian—Ordo-
vician scenarios (Zurbriggen, 2014, 2017a, b vs. that of Stephan
et al., 2019).

Fig. 4A — a synthetic stratigraphic column of the complete Ordovician sequence compiled from Veselinovic (1975), Krsti¢ and
Maslarevic (1998) and the current study. Age in green outlines the stratigraphic constraints relative to Lower, Middle and Upper Or-
dovician stratigraphy sensu lato (also in Finney, 2005). The lithostratigraphic column highlights the position of the regional-scale
Cenerian unconformity, best observed in a greenstone Supragetic basement unit. On top of the Supragetic is the Ku¢aj Mt. Ordovi-
cian sequence; B — a selected eustatic curve for the Ordovician, including relative abundance of ooidal ironstones. Graph shows
the sequence stratigraphic interpretation of successions on the “Western European Platform” in SW Europe (inset from Young,
1992, modified). The interpretation includes the latest Cambrian-Ordovician transgressive (TST) and following highstand (HST)
systems tracts. In this study, we juxtaposed the TST and HST with a more recent Ordovician bulk stratigraphy sensu lato, further
correlating the sequence stratigraphic tracts with the Carpathian-Balkan Ordovician framework (original numbers are black, up-
dated age numbers are in green, taken from Dunn et al., 2021 and references therein). The extracted relative sea-level curve for the
Ordovician of SW Europe is to the right (lowstand in sea-level consistent with the palaeogeographic position/shallow water of the
Getic/Kucaj area). The Getic/Kucaj ironstone production correlates with the “maximum production stage”, including a late Lower
Ordovician fall of sea level (LST at 478 Ma). The “maximum production stage” was succeeded by a HST. The graph also shows a
shallow Cambro-Ordovician environment with the stratigraphic position of a deformed brachiopod assemblage
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NORTH GONDWANAN STRATIGRAPHIC AND STRUCTURAL
INHERITANCE OF THE ORDOVICIAN GETIC/KUCAJ SUCCESSION:
A BRIEF SYNOPSIS

THE AGE OF THE SUPRAGETIC BASEMENT

To oldest Neoproterozoic rocks in the area lie to the west of
the Getic/Kuc€aj unit, represented by a complex Supragetic
greenschist-grade submarine mafic volcano-plutonic and sedi-
mentary succession (Spahi¢ et al., 2019a). The Supragetic
basement unit of eastern Serbia correlates with regional ana-
logues, such as at West Kraishte, and the “Morava nappe” of
western Bulgaria (former “Vlasina unit”; Anti¢ et al., 2016; Zak
et al., 2021). This unit comprises a lower greenschist-facies
basement unit (Popovic¢, 1993; Vaskovi¢, 2002; Krautner and
Krsti¢, 2003; Spahic et al., 2019a), which is the carrier of phos-
phates as indicators of a reducing environment (Pavlovi¢, 1975,
1977; for a phosphatic ironstone environment see Dunn et al.,
2021). The Neoproterozoic—Lower Ordovician age of these
rocks is confirmed by stratigraphically lowermost graphitic
schists (fossil vesicles of the alga Archaeofavosina simplex
Naum; Kalenic¢ et al., 1975; Ferretti et al., 2022). The age of the
sequence is constrained by the inarticulate brachiopods
Lingulobolus hawkei, Pseudobolus? salteri and Thysanobolus?
sp., spanning the Early Ordovician sensu lato (Gutierrez-Marco
etal., 1999; Krstic et al., 2008). The locally analogous unit is re-
ferred to as the “Beljanica green schists” (Getic/Kucaj nappe;
Fig. 3), which was tectonically displaced from the parental suc-
cession during the pervasive tectonometamorphic Variscan
and Alpine events. On top of the “Beljanica series” is the Ordo-
vician metasedimentary succession investigated (Fig. 3). The
biostratigraphical synopsis of dominantly Cambro-Ordovician
palynomorphs below (based on Veselinovic, 1972a, b;
Ercegovac et al., 1995; Ercegovac and Daji¢, 1996; Dajic,
1996) provides additional data regarding the development of
the Ordovician Armorican successions and their Gondwanan
inheritance (Gutierrez-Marco et al., 1999; Krsti¢ et al., 2008;
Anti¢ et al., 2016; Zak et al., 2021; see Ferretti et al., 2022, for a
discussion).

AGE CONSTRAINTS ON THE ORDOVICIAN METASEDIMENTARY SUCCESSION
OF EASTERN SERBIA

In general, the Lower Paleozoic Getic/Kucaj sequence along
with its east Serbian analogues, including the Svoge unit of SW
Bulgaria (Krstic and Maslarevi¢, 1998; Krstic et al., 2008;
Georgiev et al., 2022), comprise metasandstone beds, tens of
meters thick (reflecting shallow shelf seas; Krsti¢ and Maslarevic,
1998; Fig. 4A). The oldest preserved lower Paleozoic record as-
sociated with the Getic/Kucaj unit (Fig. 2) is within the Homolje
Mt. (Bajic, 1996; Krsti¢ et al., 1999; Banjac, 2004). The Homolje
succession largely resembles that of the Getic/Kucaj Mt., with
some specific features (Banjac, 2004). The Homolje Mt. area re-
veals a gneiss-dominated Alpine nappe, positioned above the
Neoproterozoic—lowermost Paleozoic greenschist-facies nappe
(Banjac, 2004). The lowermost Paleozoic sedimentation was in-
terrupted by a regional hiatus (Banjac, 2004). After the hiatus,
the Ordovician sequence accumulated a thickness of over 1000
m. The lowermost section comprised of meta-sandstones in-
cludes Protosphaeridium sp., Leiosphaeridia sp.,
Lophosphaeridium sp., Leiomarginata simplex, Granomarginata
prima and Verzchachium reductum (Ercegovac and Dajic, 1996;
also in Banjac, 2004). The anchimetamorphic siliciclastic suc-
cession represents an initial stage of deposition, conditionally
designated to the stratigraphically lowermost Ordovician. This el-
ement of the lower Paleozoic succession contains also rare
Sphaeromorphitae (Leiospheridia and Lophosphaeridium) and

Polygonomorphitae (Veryhachiuk reductum type). However,
Eomycetopsis crassiusculum, Vendotenia sp. (recorded in the
Neoproterozoic of Scotland and in schists of Alberta; Daji¢, 1996)
indicate the probable presence of rocks of older, Cambrian age
(presence of gradual Cambrian—Ordovician transition). The sec-
ond cycle, characterized by quartzitc sandstones, has
palynolomorphs dominated by the family Sphaeromorphitae:
Granomarginata prima, Leieomarginata simplex, Uniporata sp.,
Bacispheridium sp. and cf. Symplasosphaeridium sp., and in-
cludes chitinozoan fragments (Daji¢, 1996). This association
suggests the stratigraphically lowermost Ordovician. According
to the brachiopod fauna — Thysanotos siluricus Eichw., Obolus
sp., Lingullela sp., Orbiculoidea sp. — the age is Tremadocian (lo-
cation Ceréek; Veselinovi¢, 1972b; Fig. 3). An earlier study
(Krstic and Maslarevi¢, 1998) identified a highly deformed as-
semblage of the brachiopods Obolus (Lingulobolus) feistmanteli
(Barr.), Obolus bamindei from the Czech Tremadoc, Obolus
complexus Barr., and Orbiculoidea sp. Veselinovic (1972) re-
corded Thysanotos siluricus (Eichw.), a marker fossil character-
izing the Lower Ordovician (Tremadocian—Arenig) of Europe.
The upper part of the Lower Ordovician sequence is character-
ized by grey, greenish and purple laminated, medium- to
fine-grained, rarely coarse, quartz metasandstones to
subarkoses. The Alpine nappe-stacked structure resulted in the
displacement of the Upper Ordovician sequence, placing the lat-
ter underneath the Lower Ordovician (Krstic and Maslarevic,
1998; Fig. 4A). Primary bedding planes are still observable in this
metasedimentary succession (Figs. 4A and 5A,B). However, the
types of contact between the component Ordovician sequences
are poorly constrained, and may be either erosional or non-ero-
sional, or gradual and without hiatuses (Krstic and Maslarevic,
1998).

Regarding the suggested Middle Ordovician (inner shelf;
Fig. 6A), the sequence exposed at Ku€aj Mt. lacks fossils
(Krstic and Maslarevi¢, 1998). The ironstone sequence was
recognized earlier and mapped as of Middle Ordovician age
(Krsti¢ and Maslarevi¢, 1998; Fig. 4A). Such a stratigraphic po-
sition is consistent with sequence stratigraphic interpretations
and associated Ordovician sea-level reconstructions (Young,
1987), in particular with the maximum production stage (Young,
1992; Fig. 4B). Nevertheless, we have updated the strati-
graphic constraints on the local Ordovician, in particular the
Lower Ordovician sensu lato (cf. the chart in Dunn et al., 2021;
Fig. 4B). Lithologically, it is a highly heterogeneous sequence of
rocks composed of metapsammite and metapelite, which alter-
nate both laterally and vertically (Krsti¢ and Maslarevic, 1998).
The metasandstones are white to pale grey and are well-sorted.
The chamosite and siderite beds investigated are several
metres thick, and form irregular lenses overlying quartz sand-
stones that in turn overlie metapelite (upper segment of the
Klo¢anica River; Fig. 3). Chamosite and siderite are the princi-
pal constituents of these rocks and are associated with dolo-
mite, calcite, sheridanite, and occasionally quartz. Chamosite is
green in micro-nodular aggregates fine flakes in streaks. Accre-
tions resembling pseudo-ooids are rare. Siderite forms
cryptocrystalline aggregates, in places in the form of spheru-
lites. There are several Fe-bearing Ordovician localities (Krsti¢
and Maslarevi¢, 1998; Gutierrez-Marco et al., 2003). These
“oolitic ironstones” are of pre-Hirnantian age (Krstic and
Maslarevi¢, 1998; Yanev et al., 2006), being of middle
Berounian, and lower and upper Orenitian age (Grohoten For-
mation; Gutierrez-Marco et al., 2003). This barren Middle Ordo-
vician sequence of the Ku¢aj Mt. includes abundant magnetite,
scarce zircon, apatite, pyroxene, green amphibole, epidote and
chlorite (Krsti¢ and Maslarevi¢, 1998).
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Fig. 5. Ordovician exposures in the Kucaj Mt.

A — a Lower Ordovician metasandstone sequence; B — folded
Upper Ordovician metapelites

At a regional scale, a typical Upper Ordovician age
(meta-sandstone, Zvonacka Banja locality; 14 samples, Dajic,
1996) is indicated by Lophosphaeridium citrinum, L. sp. (aff.
Pervarerum), L. cf. papillatum, Leiosphaeridium sp. (cf. L.
minuta). A metaclaystone (Mali Malinik, Bauca) contains
Mirchystridium varians, Leiosphaeridia sp., Priscogalea sp.,
Veryhachium sp. (type — breve), Lophosphaeridium cf.
pervarerum and Mirchystridium radinas. The entire succession
comprises Caradocian shallow-marine siliciclastic rocks of the
Homolje Mt. (Krstic and Maslarevi¢, 1990). This succession
has, according to earlier palynological studies, a Middle—Upper
Ordovician age, whereas a recent study indicated an Upper Or-
dovician to Silurian age span (Acanthomorphitae,
Polygonomorphitae, Sphaeromorphitae, Netromorphitae and
Hercomorphitae; Daji¢, 1996; Fig. 4A). According to the au-
thors, these palynomorph associations are equivalent to those
in Belgium (sensu Martin, 1968; Daji¢, 1996). The Upper Ordo-
vician of the Kucaj Mt. area reveals a dark grey to black thin-lay-
ered, laminated sandstone, and metamudstone, which includes
graphitic matter (Fig. 5B). In the Kucaj Mt. area, a green-mottled
metashale is documented (equivalent to the Cerecel Formation
of the Svoge unit; Krsti¢c and Maslarevic, 1998). Despite indica-
tions that later Variscan interference has not influenced this pre-
sumed eastern Gondwana fragment (Stephan et al., 2019),
compressional deformation structures are visible in the field. A
number of folds affecting the Upper Ordovician sequence was

observed in the fieldwork; Fig. 5A, B). The presence of
nappe-stacked, displaced Upper over Lower Ordovician
(Fig. 4A), indicates that the post-Variscan Alpine compression
had largely a brittle deformation character (e.g., Vangelov et al.,
2013; Plissart et al., 2018; Balkanska et al., 2021). The upper-
most  Ordovician  succession (Hirnantian layer with
Glyptograptus persculptus) is overlain by Lower Llandovery de-
posits (Krsti¢ et al., 2005). There is a transgressive relationship
between the Hirnantian (glaciomarine) metasandstones (Kucaj
Mt.; Krsti¢ and Maslarevi¢, 1998; Barjaktarovic, 2007; Fig. 4A),
and pebbly sandstones of the Svoge unit (Cerecel beds of
western Bulgaria; Gutierrez-Marco et al., 2003) and the under-
lying Upper Ordovician sequence. The Hirnantian sequence is
followed by earliest Silurian grey-green foliated to thin-bedded
phyllites (Kuéaj Mt.; Krsti¢ et al., 2005). The Llandovery com-
prises grey-green foliated to thin-bedded phyllites, equivalent to
the Cerecel beds of Bulgaria. The metasandstones contain Up-
per Ordovician acritarchs: Lophosphaeridium citrinum, L.
parverarum, L. cf. papilatum, Lophosphaeridium p.,
Brochopsophosphera cf. uralica, Trachipsophosphaera sp.,
Leiosphaeridia sp. type C, Leiomarginata simplex, Priscogallea
sp., ?Tylotopallia sp. and Michrystridium pallidum (Ercegovac
and BDajic, 1996). In the uppermost section of the
metasandstone beds, there are fragments of older Ordovician
rocks: metasandstones, metasiltstones and metashales. The
metasandstones are overlain by graphitic metapelites (0.5 m),
characterized by the graptolite Glyptograptus sp., including gra-
phitic metapelites and lydites of the acuminatus graptolite
Biozone (marking the lowermost Silurian; Krstic et al., 2005).
The late Llandovery was a period of global sea-level rise, indi-
cated by the presence of black graptolitic shales (e.g.,
Sachanski et al., 2010, and references cited therein).

THE ORDOVICIAN “CENERIAN OROGENY”
AND BACK-ARC CRUSTAL PROCESSES:
GETIC/KUCAJ AND SUPRAGETIC INFERENCES

EVIDENCE OF CENERIAN (SARDIC) COMPRESSION

Recent reconstructions of former Cambro-Ordovician pe-
ripheral terranes relative to north Gondwana (Armorican-type
basement units in the Carpatho-Balkanides; Getic/Kucaj/Sred-
na Gora, Supragetic/Serbo-Macedonian/Ograzhden/Morava
basement; e.g., Krsti¢ and Krautner, 2003; Balintoni et al,,
2010, 2014; Kounov et al., 2012; Zagorchev et al., 2012; Anti¢
et al., 2016; lancu and Seghedi, 2017; Spahi¢ and Gaudenyi,
2018) imply lithospheric-scale accretionary processes led by
accretionary-type subduction and an episode of crustal growth
in the hanging-wall position (e.g., Crook, 1980; Martini et al.,
1991; McKerrow et al., 1991; sensu Cawood et al., 2009;
Zurbriggen, 2015, 2017a, b; Moghadam et al., 2018; Oriolo et
al., 2021; Siegesmund et al., 2021; Spahi¢ et al., 2021; Fig. 7A).
However, some more recent palinspastic reconstructions im-
pose a transcurrent faulting episode affecting the Gondwanan
stable platform or passive margin also referred to as the
Armoric spur (Garfunkel, 2015; Franke et al., 2017; Puddu et
al., 2018; Stephan et al, 2019). In the case of the
Carpathian-Balkan belt, scarce data indicate latest Cambrian
high-strain deformation (shear zones, migmatites; Spahi¢ et al.,
2021) and metamorphism, recorded in the nearby Cambrian
gneissic Serbo-Macedonian Unit (Rb/Sr method on whole-rock
samples from paragneiss yield 488 Ma, Balogh et al., 2004).
The latest Cambrian event likely represents the initial stage of
the north Gondwanan collision.
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Fig. 6A — an Ordovician palaeogeographic reconstruction, exposing the Carpathian-Balkan Getic/Kucaj basement, which underwent
the Cenerian (Sardic) event (inset from Stephan et al., 2019, significantly modified). There are two Cenerian (Sardic) explanations or
palinspastic options: (i) no Ordovician active margin (e.g., Stephan et al., 2019) or (ii) the Cenerian (Sardic) active margin having the
polarity of subduction directed southwards (Zurbriggen, 2014). The Getic/Kuéaj unit experienced compressional lifting in the
Cenerian (Sardic) followed by ironstone formation (after the late Lower Ordovician transgressive episode); B — magmatic ages across
Balkan basements (data from Stephan et al., 2019); C - relative probability plots from sampled Middle and Upper Ordovician se-
quences (data taken from Georgiev et al., 2021, modified). The peak exhibiting the Cadomian maximum accords with a voluminous
sourcing episode imprinted by detrital ages spanning 0.54 to 0.44 Ga (Bahlburg et al., 2009). The second and third peaks are visible in
both samples, pinpointing the decreasing magmatic activity related to back-arc opening; D — detrital zircon data of the gneissic
Serbo-Macedonian Unit (data from Antic et al., 2016, slightly modified). The data undoubtedly show the Cenerian (Sardic) peak
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Fig. 7. Tectonic-palaeogeographic model of the Ordovician Ku€aj sequence, including the Supragetic basement during the
Lower Ordovician Cenerian (Sardic) “orogeny” (Fig. 7C — inset from Stephan et al., 2019, with significant modification)

A — formation of Cadomian—late Cadomian magmatic arc during the Neoproterozoic—Cambrian, onset of peripheral crustal thickening. The
age of metamorphism is according to Balogh et al. (2004); B — subduction beneath a stabilized Gondwanan shelf produced extension and
emplacement of limited mafic melts in the incipient back-arc rift valley (Lower to beginning of Middle Ordovician); C — the peak of the
Cenerian (Sardic) event, mild compression, a shallow sea, and opening of the incipient back-arc rift valley. Opening produced mafic volcanic
rocks, allowing the formation of Fe-rich minerals; D — Late Ordovician transgression (see Fig. 4B) followed by regional extension (likely at the
expense of the active margin), and the terminal Silurian detachment and dispersal of peripheral mini-continents towards western Moesia
(Baltica); E — palaeogeographic reconstruction of the Cenerian (Sardic) event; the model includes a questionable active mar-
gin/subduction-accretion stage (the model of Stephan et al., 2019 proposes a passive margin). The presence of a volcanic arc (as in the Or-
dovician Getic/Ku€aj sequence investigated herein) pinpoints an active margin positioned along the eastern north Gondwanan craton.
Locations of mafic and calc-alkaline magmatism are in blue, i.e., red colours. The process likely restarted in the earliest Silurian, allowing
separation of Carpathian-Balkan peripheral terranes from eastern north Gondwana (as per Bonev et al., 2013; Maino et al., 2019; Spahi¢ et
al., 2021; Topuz et al., 2021)
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This event was succeeded by a transgression and a Lower
Ordovician high-systems-tract (Fig. 4A, B) marking new, wide-
spread deposition across this segment of the north Gondwanan
shelf. Importantly, the actual age of the “Lower Ordovician” of
east Serbia ends with the Tremadocian Stage (Fig. 4A). By
comparison with global Ordovician stratigraphy (Fig. 4A, B), the
end of the Tremadocian actually represents the middle section
of the Middle Ordovician of the Global Series (see Georgiev et
al., 2022, for details). In this Middle Ordovician compression ep-
isode are placed the deformed Tremadocian brachiopods, fur-
ther indicating immediately post-Tremadocian crustal shorten-
ing. In addition, a major regression episode is documented at
the end of “Lower Ordovician” (Banjac, 2004) or at the end of
Middle Ordovician of the Global Series. Further evidence of
Middle Ordovician compression and upliftis a 1600 m-thick “up-
per part of the Vlasina complex”. This upper sequence uncon-
formably overlies the Arenigian terminal succession belonging
to the “lower unit” (Krstic et al., 2003). To summarize, the
Getic/Kucaj Ordovician sequence exposes clear evidence of
Cenerian (Sardic) compression, showing an eastern north
Gondwana inheritance (according to Stephan et al., 2019, ex-
clusively the eastern north Gondwanan segment experienced
the latter event):

— pre-Variscan Cenerian (Sardic) compression caused
deformation of a brachiopod assembly within the Lower
Paleozoic Getic/Kucaj clastic sequence, succeeded by
the formation of the ironstone sequence investigated
(transgressive systems tract; Fig. 4A, B);

— in addition, data of Stephan et al. (2019) show a clear
correlativity of magma generation across the
Carpathian-Balkan basements and its involvement with
the Cenerian (Sardic) events (magmatic zircons;
Fig. 6B, C);

— detrital zircon data include a Cenerian peak
(~480—440 Ma), documented within the gneiss-bearing
Serbo-Macedonian Unit (see Anti¢ et al., 2016, Fig. 9,
“Lower Complex”; Fig. 6D).

ORDOVICIAN FE-BEARING IRONSTONES AS MARKERS
OF ABACK-ARC SEAWAY

Ordovician oolitic ironstones of the “Paleozoic North African
Ironstone Belt” extend along the margin of the Gondwana
craton (Guerrak, 1988), thus being present across western and
central European basement terranes (Young, 1992; Trela,
2008). The most common occurrence of chamosite and siderite
is in banded iron formations, representing the principal
iron-bearing minerals in ironstones, often associated with un-
derlying fine-grained lithified claystone sequences (Deer et al.,
2013a). In addition to the Ordovician ironstone maximum pro-
duction stage (Oggiano and Mameli, 2006; Dunn et al., 2021),
banded iron formations are documented across most Precam-
brian continental regions, together being a principal source of
iron and phosphates (e.g., Zelazniewicz et al., 2009; Dunn et
al.,, 2021), such as that of the Supragetic basement unit.
Oolitization is a sedimentary process of accretion developed in
a quiet environment (Guerrak, 1988) with low sedimentation
rates, and thus has often been described as part of a
transgressive initial deposit above an unconformity (Young,
1992). The ironstone sediment is also ascribed to the formation
of aggradational parasequence on a storm-dominated shelf
characterized by recurrent coastal upwelling (Dunn et al,
2021). Ordovician ironstones may also be correlated with the
bottom of fining-upwards sequences on shallow shelves
(transgressive conditions; Guerrak, 1988; Pufahl et al., 2019).

Such a restricted near-shore environment that was semi-con-
nected with inconsistently oxygenated Ordovician oceans pro-
vided a suitable anoxic hydrothermally-enriched habitat for the
appearance of ferruginous bottom water (Dunn et al., 2021; Li
et al., 2021).

In the oolitic Jurassic ironstones of the English Midlands,
siderite represents the principal ore mineral appearing along
with chamosite and hydrated iron oxides. The origin of this par-
ticular ironstone deposits is not fully comprehended; theoreti-
cally, iron is a derivative extracted from continental sources
(processes of weathering), transported as the bicarbonate and
precipitated once captured CO, was absent to keep iron as the
soluble bicarbonate. For example, weathering of erosion-ex-
posed (oceanic) mafic rocks and related epiclastic rocks con-
tributes to enrichment of iron, the process indispensable for the
deposition of chloritic oolitic claystone (Oggiano and Mameli,
2006). Much siderite results from the carbonation of chamosite,
and it may likewise be formed by the contemporaneous re-
placement of calcite by FeCO; (Deer et al., 2013a). Siderite has
appeared as a hydrothermal mineral in metallic veins, in
paragenesis with manganese; the iron-rich carbonates of the
Coeur d’Alene district of Idaho are associated with Pb, Ag and
Zn sulfide orebodies. Siderite occurrence in the Ivigtut cryolite
deposit is well-documented (table 58, analysis 4 in Deer et al.,
2013a); however, this cryolite deposit is linked to a pegmatitic
pneumatolytic origin. Interestingly, Fe-chlorite is a dominant
clay mineral in Arctic Sea sediments, whereas montmorillonite
and kaolinite indicate mid-latitude seas, depending on the
weathering intensity in the source areas (Martini et al., 2001).

The Getic/Kucaj granular Fe-silicate-rich ironstone has
35.72% Fe, 1-2% Mn, and locally traces tungsten (Mrvaljevic,
1956). Chamosite and siderite, as the principal constituents of
these rocks, are associated with dolomite, calcite, sheridanite,
and sometimes quartz (Krstic and Maslarevi¢, 1998). The
chamosite is green colour, forming micro-nodular aggregates or
as fine flakes, having the form of streaks, whereas pseudo-
ooids are scarce. Siderite occurs in the form of cryptocrystalline
aggregates, occasionally having the shape of spherulites.
Chamosite, siderite, and sheridanite were identified by differen-
tial thermal (DTA) and XRPD analyses (Krsti¢ and Maslarevic,
1998). A close inspection of the XRPD pattern (diffraction lines)
corroborates the presence of siderite (FeCOs; Deer et al,
2013a; ICDD-PDF: 83-1764), including the components of the
solid-solution series of the chlorite group (between clinochlore,
(Mg10A|2)[A|gsi6020](OH)16 and chamosite, (Fe2+1oA|2)
[Al;SigO20](OH)s6; Deer et al., 2013b). However, reevaluation
shows that it is difficult to confirm any presence of chamosite
and sheridanite (without chemical analysis), because these
minerals are constituents of the chlorite group with exception-
ally similar XRPD patterns. With regards to the abundant
chlorite, this is a very common mineral in a widespread low- to
medium-grade metamorphic assemblage (Supragetic base-
ment, “Beljanica series”; Figs. 2 and 3). Chlorite is formed at
temperatures reaching ~400°C and pressures of ~0.3 GPa.
Chlorites are also a common constituent of igneous rocks due
to the hydrothermal alteration of the embedded primary ferro-
magnesian minerals. Notably, chlorites are a common by-prod-
uct of weathering and appear in many argillaceous rocks, in-
cluding some iron-rich deposits (Deer et al., 2013b).

The presence of pervasive bioturbation, coupled with the
ironstone sequence, likely indicates a low-energy coastal habi-
tat, which allows fallout from suspension in a low-oxygen off-
shore setting (Pufahl et al., 2019, and references cited therein).
Such conditions (Krstic and Maslarevic, 1998) indicate the
presence of a shallow inner shelf consistent with the “Oxygen
Minimum Zone” (Mathesson et al., 2022; Fig. 7C-E). The shal-
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low environment is consistent with the Cambro-Ordovician
high-stand systems tract (Fig. 4A, B). This high-stand systems
tract at Cambrian—Lower Ordovician sea level prevented
subaerial exposure of the Gondwanan shelf. The inner shelf or
tidal flat was in a very shallow environment lasting up to the ca.
Early—Middle Ordovician boundary (or beggining of the Middle
Ordovician), the formation of unconformity and onset of a
transgressive systems tract (Guerrak, 1988; Pufahl et al., 2019;
Fig. 4A, B). The suggested Early—-Middle Ordovician regional
uplift and shallow setting is consistent with the underlying de-
formed brachiopod fauna. The ironstone accumulated by com-
pensating the precursory low-stand conditions (Fig. 7C, D).

BRIEF COMPARISON WITH REGIONAL BASEMENT ANALOGUES:
EVIDENCE OF BACK-ARC IMPRINTS

The presence of post-Ordovician to pre-Silurian (or Ordovi-
cian age) gabbro intrusions belonging to the northeastern
Getic/Kucaj nappe (Bogdanovic et al., 1978; Fig. 2) suggests
the presence of an Ordovician magmatic arc or intraplate intru-
sive equivalents (Fig. 7E). Another regional example of
back-arc activity is inferred within the Rhodopean massif of the
Carpathian-Balkan thrust belt (Bulgaria). Back-arc north
Gondwanan activity is constrained by Ordovician low-Ti
tholeiitic to calc-alkaline gabbros/basalts and plagiogranite of
MORB-IAT MORB-type with a back-arc basalt signature
(Bonev et al., 2013; Fig. 7E). Back-arc developments most
likely contributed to delivering east-west opening of either the
Rheic Ocean (McKerrow et al., 1991; Nance et al., 2010, 2012;
Kounov et al.,, 2012; Linnemann et al., 2014; Sen, 2021a) or the
onset of the eastern Rheic (e.g., Bonev et al., 2013; Chatalov,
2017; Maino et al., 2019; Sen, 2021b). The peripheral fragmen-
tation of north Gondwana is further indicated by an early Silu-
rian felsic episode emplaced and documented within the
Serbo-Macedonian Unit (476—433 Ma and 439 +2 Ma; Anti¢ et
al., 2016; Fig. 7D). Silurian detachment of Carpathian-Balkan
peripheral terranes triggered the onset of Silurian, Devonian,
and Lower Carboniferous deposition (e.g., Krsti¢ et al., 2003,
2005, Spahié et al., 2019a, b; Soster et al., 2020). Such a con-
clusion is additionally supported by the fact that the entire clus-
ter of Carpathian-Balkan basement terranes experienced
Variscan deformation (e.g., lancu et al., 2005; Antic et al., 2017,
Spahic et al., 2021). Variscan deformation is not predicted for
peripheral eastern North Gondwanan terranes (terranes posi-
tioned to the east of the Armorican spur; Stephan et al., 2019).

CONCLUDING REMARKS

The displaced pre-Mesozoic Variscan terranes of the
Carpathian-Balkan basement units incorporate several
high-grade crystalline down to meta-sedimentary basement
branches of early Phanerozoic age, in particular, the
Getic/Kucaj basement (Krsti¢c and Krautner, 2003; Getic/Kucaj
nappe; lancu et al., 2005; Seghedi et al., 2005; Anti¢ et al.,
2016; Spahi¢ and Gaudenyi, 2018; Fig. 2). The regionally larg-
est Getic/Kucaj nappe (Fig. 2) was either derived from the pe-
riphery of the east northern Gondwanan shelf (Stephan et al.,
2019) or most likely detached from the Ordovician active mar-
gin (Zurbriggen, 2015; Fig. 7E). Other inferences are as follows:

— Ordovician contraction and back-arc activity determined
the following bipartite eastern Gondwana-related pe-
ripheral events: (i) transient Early Ordovician Cenerian
(Sardic) compression affecting the Lower Ordovician
Getic/Ku€aj sequence and nearby basements (repre-
sented by the 488 Ma metamorphic event, and detrital
zircon data in the Serbo-Macedonian Unit, and also by
an assemblage of highly distorted brachiopods of Lower
Ordovician age; Krstic and Maslarevi¢, 1998), (ii) the
hitherto unexplained inner-Supragetic unconformity
(“lower vs. upper Vlasina unit”; Krsti¢ et al., 2003; Anti¢
etal., 2016), including (iii) the presence of mafic-type Or-
dovician magmatism;

— ironstone production was likely supported by the under-
lying Supragetic-Getic greenschist basement, including
the “Beljanica greenstones”. The Ordovician model pro-
posed provided conditions capable of a sustained sup-
ply of Fe into a clast-supported underlying lithified sedi-
mentary level to become hard ironstone;

— Ordovician mafic volcanic rocks of the NE Getic/Kucaj
nappe likely reflect the onset of Rheic ocean lithosphere
production, along its eastern flank;

— The new constraints on the Cenerian (Sardic) event in
Balkans are consistent with the well-documented Ordo-
vician developments recorded across southern Euro-
pean basements. In the Balkans, Cenerian (Sardic)
accretionary interference is to (early) Middle Ordovician
age.
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