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S.; Palma, A.J.; Stanković, S.;
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Abstract: The possibility of using commercial p-channel power vertical double-diffused metal-oxide-
semiconductor field-effect transistors (VDMOSFETs) as X-ray sensors is investigated in this case study.
In this aspect, the dependence of sensitivity on both the gate voltage and the mean energy for three
X-ray beams is examined. The eight gate voltages from 0 to 21 V are applied, and the dependence
of the sensitivity on the gate voltage is well fitted using the proposed equation. Regarding X-ray
energy, the sensitivity first increases and then decreases as a consequence of the behavior of the mass
energy-absorption coefficients and is the largest for RQR8 beam. As the mass energy-absorption
coefficients of SiO2 are not found in the literature, the mass energy-absorption coefficients of silicon
are used. The behavior of irradiated transistors during annealing at room temperature without gate
polarization is also considered.

Keywords: VDMOSFETs; X-ray; irradiation; sensitivity; fading

1. Introduction

The idea of using p-channel metal-oxide-semiconductor field-effect transistor (MOSFET),
or shorter MOS transistor, as a pMOS dosimeter of ionizing radiation is very old [1], and the
basic concept of pMOS dosimeter is to convert the threshold voltage shift, ∆VT, induced by
irradiation, into absorbed radiation dose, D. The pMOS dosimeter advantages, in comparison
with other dosimetric systems, include immediate, non-destructive read out of dosimetric
information, extremely small size of the sensor element, the ability to permanently store
the absorbed dose, wide dose range, very low power consumption, compatibility with
microprocessors, and competitive price (especially if cost of the read-out system is taken into
account). The disadvantages are a need for calibration in different radiation fields (“energy
response”), relatively low resolution (starting from about 1 rad), and nonreusability.

Power MOSFETs attract attention when they are stressed by electric fields [2,3], when
they are operating in ionizing radiation fields [4–8], and as potential gamma radiation
dosimeters [9–11]. Otherwise, many applications of power MOSFETs need to be radiation-
hardened [12]. In addition, the influence of ionizing radiation on some MOSFETs con-
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taining different materials [13–19] and on some commercial electronic devices [20–22] has
been investigated.

There are many investigations of the effect of gamma radiation [9,10,23], protons [5,23],
and heavy-ions [6,24] but not the effect of X rays on commercial MOSFETs, to the best
of our knowledge. Additionally, their ability to be used as dosimeters of X rays has not
been investigated, to our knowledge. X-rays are much more complex and complicated
than gamma rays [25] because they are polyenergetic, but the transistor responses are
highly dependent on energy from the X-ray spectrum. Many laboratories do not have an X
spectrometer but use mean energy and/or a half-value layer as X-beam parameter(s).

In this case study, we investigate the sensitivity, as a main dosimetric parameter, of
commercial p-channel VDMOSFETs to X-rays depending on different positive voltages at
the gate (a zero gate voltage case was presented in [26]). This transistor type is potentially
suitable for radiation dosimetry because it has a relatively thick oxide of about 100 nm. The
dependence of sensitivity on X-ray energy is also investigated using three different beam
energies. The behavior of densities of positive radiation-induced fixed traps (FTs) in the
gate oxide and switching traps (STs) near and at the interface during X-ray irradiation is
examined [27,28]. The recovery of the threshold voltage of irradiated transistors during
their annealing at room temperature without gate voltage (spontaneous annealing) is also
investigated as another dosimetric parameter.

2. Experimental Details

The IRF9520 commercial p-channel VDMOSFETs, mounted in TO-220 plastic pack-
aging, having about 100 nm oxide thickness and pre-irradiation threshold voltage of
VT0 = 2.9 V, were used. The transistors were irradiated at room-temperature with X-rays to
the value of the air kerma of Kair = 50 Gy at the Vinča Institute of Nuclear Science, Belgrade,
Serbia (a Hopewell Design Beam Irradiator model x80-225 was used). The voltages at the
gate during irradiation were VG,irr = 0 V, 3 V, 6 V, 9 V, 12 V, 15 V, 18 V and 21 V, while the
drain and source were grounded (in the case of VG,irr = 0 V, all pins of transistors were
grounded).

Air kerma, Kair, was measured directly with the dosimetric system containing the PTW
UNIDOS Webline electrometer and Exradin A3 ionization chamber. The transistors were
irradiated at a distance of 35 cm, but Kair was measured at a distance of 50 cm, and then
Kair was recalculated for a distance of 35 cm using the quadratic law.

Three RQR radiation qualities (RQR3, RQR8, and RQR10) were used. The mean energies
were calculated by SpekCalc software that is free of charge for research purposes [29]. The
characteristics of X-ray beams, the mean energies and air kerma rates are given in Table 1.

Table 1. The X-ray beam type, tube potential (Up), tube current (Ip), mean energy (Emean), and air
kerma rate (DKair).

X-ray Beam Up (kV) Ip (mA) Emean (keV) DKair (mG/s)

RQR3 50 30 32.57 9.28
RQR8 100 30 50.82 26.45

RQR10 150 30 56.70 30.31

During irradiation, an automatic system for measuring the electrical transfer char-
acteristics was used [26,30]. This system contains the custom-made switching and bias
unit (SABU) [30], and for these experiments a specially designed printed circuit board with
relays (PCBR) [26], in which the eight VDMOSFETs were placed, was implemented. The
PCBR is connected with SABU via two DSUB cables—one DSUB-25 is for relay control, and
the other DSUB-9 is for transistors biasing. The SABU contains a PIC16F887 microcontroller
that communicates with the PC via an FTDI chip. The source-measure unit (Keithley
2400 SMU) is connected to the computer via USB-GPIB interface card. The entire system
(SABU, PCBR, and SMU) is controlled by the PC using a custom-written program in C#.
The block diagram of experimental setup is displayed in Figure 1.
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Figure 1. Block diagram of experimental setup.

After irradiation, the spontaneous annealing (SA), representing the room-temperature
annealing without a gate voltage (VG,sa = 0 V), was performed up to 3500 h.

The gate and drain were short-connected during the electrical characteristic mea-
surements. The drain-source current, IDS, was forced, and the gate voltage, VG, was
measured. The threshold voltage, VT, is determined from the electrical transfer char-
acteristics in saturation as the intersection between VG axis and the extrapolated linear
region of the (IDS)1/2–VG curves using the least-square method performed in the Octave
6.2.0 program [31]. For p-channel MOSFETs, VT is negative, but in the whole paper the
absolute values of VT are used.

The threshold voltage shift, ∆VT, is:

∆VT = VT −VT0. (1)

The midgap-subthreshold technique (MGT) that determines the components of ∆VT
of fixed traps (FTs), ∆Vft, and of switching traps (STs), ∆Vst, was used [32]. ∆VT during
irradiation and annealing can be presented as:

∆VT = ∆Vf t + ∆Vst. (2)

Using ∆Vft and ∆Vst, the areal densities of FTs, ∆Nft [cm−2], STs, and ∆Nst [cm−2],
respectively, can be found [32]:

∆N f t =
Cox

e
∆Vf t , → ∆Nst =

Cox

e
∆Vst. (3)

where Cox = εox/tox is the gate oxide capacitance per unit area, εox = 3.45 × 10−13 F/cm is
the silicon-dioxide permittivity, and e is the electron charge.

Since the MGT is an electrical measurement technique that does not really recognize
the physical location of the traps but recognizes the electrical activity of created traps,
we usually use ∆Nft and ∆Nst as they better reflect the electrical response of the traps,
compared to the more commonly used quantities, which imply the physical location of the
traps: the density of oxide traps (the traps in the oxide), ∆Not, and the density of interface
states (the states exactly at the SiO2/Si interface), ∆Nit.

The traps, created by any stress (radiation, electric fields, temperature, etc.), which do
not capture the carriers (charge) from the channel (i.e., do not exchange carriers (charge)
with the channel) within the time frame of the electrical MG measurement, represent the
FTs. The traps, created by any stress, which capture the carriers (charges) from the channel
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(exchange carriers (charges) with the channel) within the time frame of the electrical MG
measurement, represent the STs [31].

The STs consist of traps created in the oxide but very near the SiO2/Si interface, called
the slow switching traps (SSTs) or border traps, and of traps created exactly at the SiO2/Si
interface, called fast-switching traps (FSTs), true-interface traps (true interface states), or
simply-interface traps (states). The correlation between the densities of these traps is [33]:

∆Nst = ∆Nsst + ∆N f st, (4)

where ∆Nsst is the density of SSTs and ∆Nfst is the density of FSTs. It is obvious that
∆Not includes the FTs and SSTs but ∆Nit only includes FSTs, and the correlations are
∆Not = ∆Nft + ∆Nsst and ∆Nit = ∆Nst − ∆Nsst = ∆Nfst.

3. Results and Discussion

The results of the threshold voltage shift, ∆VT, during irradiation with VG,irr = 21 V
(maximum gate polarization used), for all three X-ray beams, are shown in Figure 2. The
case with the minimum value of the gate polarization of VG,irr = 0 V (zero gate polarization)
was considered in [26]. All used gate polarizations, including zero gate polarization, show
the same behavior.
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Figure 2. Threshold voltage shift versus air kerma.

It was shown that the dependence of ∆VT on Kair for VG,irr = 0 V is linear up to the
investigated air kerma of 50 Gy [26]:

∆VT = S · Kair, (5)

where S is the sensitivity of the transistors to radiation. Linearity is expected to increase
with increasing gate polarization. Here, it is proven that the ∆VT = f (Kair) dependence for
all used gate polarizations is linear according to Equation (5) (shown only for VG,irr = 21 V
in Figure 2), and r-square (r2) correlation coefficients of linear regression are higher than
0.99 for all cases. Table 2 shows the sensitivity of irradiated VDMOSFETs.

Our investigations have shown that the following simple function can fit very well the
dependence of ∆VT on VG,irr, at certain dose [34].

∆VT(VG) = ∆VT,sat(1− r · sVG,irr ) , (6)

where ∆VT,sat is the saturation value of ∆VT, and r and s are the positive constants.
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Table 2. The sensitivity, S, of irradiated VDMOSFETs.

VG (V) SRQR3 (mV/Gy) SRQR8 (mV/Gy) SRQR10 (mV/Gy)

0 6.76 7.78 7.13
3 19.46 22.21 20.50
6 24.10 27.50 25.68
9 28.33 32.18 28.57
12 30.38 34.36 32.28
15 30.27 38.81 35.00
18 33.90 42.91 38.36
21 34.61 42.63 38.33

Consequently, a similar equation can be used to fit the dependence of S on VG,irr:

S(VG) = Ssat(1− a · bVG ,irr) , (7)

where Ssat is the saturation value of S, and a and b are the positive constants. Figure 3 shows
that the fitting of sensitivity using Equation (7) is good. The parameters of Equation (7),
obtained as a result of fitting shown in Figure 3, are given in Table 3.
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Table 3. The parameters of Equation (7) for three beams.

X-ray Beam Ssat (mV/Gy) a b

RQR3 0.0343 0.7868 0.8447
RQR8 0.0457 0.8040 0.8907

RQR10 0.0403 0.7980 0.8805

The dependence of the density of FTs and ∆Nft on Kair for VG,irr = 21 V is shown in
Figure 4. ∆Nft is the highest for the RQR8 beam but the lowest for RQR3. ∆Nft also shows
this behavior for the other used polarizations (not shown), except for VG,irr = 0 V, analyzed
in [26], where ∆Nft is also the highest for the RQR8 beam but almost the same for the other
two beams. Figure 5 shows that ∆Nst is about 50% less than ∆Nft for VG,irr = 21 V, and ∆Nst
is the highest for RQR3 and the lowest for RQR10. VG,irr = 0 V shows opposite behavior,
and ∆Nst is the highest for the RQR10 beam but the lowest for RQR3 [26].
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∆Nft = f (VG,irr) dependence is not linear, and it is not possible to find a simple parame-
ter similar to sensitivity by which we could easily consider the dependence of ∆Nft on VG,irr.
Therefore, ∆Nft at a certain Kair should be considered, and it is best to take the last point
during irradiation, i.e., Kair = 50 Gy. The same goes for ∆Nst = f (VG,irr). The values of ∆Nft
at 50 Gy are presented in Figure 6, showing that the highest density is for RQR8 and the
lowest for the RQR3 beam. This behavior corresponds to the sensitivity shown in Figure 3.
However, ∆Nst does not show any clear dependence on VG,irr as ∆Nft (Figure 7). ∆Nft is
twice as large as ∆Nst and has a more dominant effect on ∆VT than ∆Nst. Although ∆Nft
contribution to ∆VT is still significant, it is much lower than in the case of gamma radiation
of VDMOSFETs, when ∆Nft is usually more than five times higher than ∆Nst [31,35].



Electronics 2022, 11, 918 7 of 12Electronics 2022, 11, x FOR PEER REVIEW 7 of 12 
 

 

 
Figure 6. ∆Nft at Kair = 50 Gy versus gate voltage during irradiation. 

 
Figure 7. ∆Nst at Kair = 50 Gy versus gate voltage during irradiation. 

Figure 8 shows the dependence of ∆Nft at Kair = 50 Gy on mean beam energy, Emean. 
The behavior is the same for all applied voltages, as in the case of VG,irr = 21 V shown in 
Figure 4, including zero polarization [26]. 

 
Figure 8. ∆Nft at Kair = 50 Gy versus mean beam energy. 

Figure 6. ∆Nft at Kair = 50 Gy versus gate voltage during irradiation.

Electronics 2022, 11, x FOR PEER REVIEW 7 of 12 
 

 

 
Figure 6. ∆Nft at Kair = 50 Gy versus gate voltage during irradiation. 

 
Figure 7. ∆Nst at Kair = 50 Gy versus gate voltage during irradiation. 

Figure 8 shows the dependence of ∆Nft at Kair = 50 Gy on mean beam energy, Emean. 
The behavior is the same for all applied voltages, as in the case of VG,irr = 21 V shown in 
Figure 4, including zero polarization [26]. 

 
Figure 8. ∆Nft at Kair = 50 Gy versus mean beam energy. 

Figure 7. ∆Nst at Kair = 50 Gy versus gate voltage during irradiation.

Figure 8 shows the dependence of ∆Nft at Kair = 50 Gy on mean beam energy, Emean.
The behavior is the same for all applied voltages, as in the case of VG,irr = 21 V shown in
Figure 4, including zero polarization [26].

The absorbed dose, D, in matter represents the mean energy absorbed per unit mass
of irradiated matter at the point of interest, and for a constant incident radiation flux it is
defined as follows:

D =
Eab
m

(
Gy
kg

)
, (8)

where Eab is the mean absorbed energy in the matter and m is the mass of the matter. Taking
into account the mechanisms of creating traps in the oxide during irradiation [31], it is
absolutely clear that ∆Nft depends on the energy absorbed in the gate oxide (SiO2). Based on
Equation (8), it follows that ∆Nft directly depends on the absorbed dose in SiO2 and DSiO2.

If all X-ray photons have the same energy corresponding to the mean energy, Emean,
then only one type of interaction effect will be involved (the photoelectric effect for these
mean energies [31]). However, it should be borne in mind that it is a polyenergetic radiation
spectrum that also includes radiation photons of lower and higher energies, so for some
energies the Compton effect is dominant.
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The absorbed dose in matter is related to the kerma in air via the equation [31]:

D =
(µme(E))matter
(µme(E))air

Kair, (9)

where (µme(E))matter and (µme(E))air are the mass energy-absorption coefficients of the matter
and air, respectively. These coefficients are energy-dependent, and for SiO2 Equation (9)
can be written as

DSiO2 =
(µme(E))SiO2

(µme(E))air
Kair, (10)

where (µme(E))SiO2 represents the mass energy-absorption coefficients of SiO2.
Unfortunately, we were not able to find the values for (µme(E))SiO2 in the literature.

Therefore, instead of (µme(E))SiO2, we used the mass energy-absorption coefficients of
silicon, (µme(E))Si, given in Ref. [36]. This difference can be significant for energies less than
100 keV. In Figure 9, the (µme(E))Si/(µme(E))air ratio in terms of beam energy is shown. If
we compare the results from Figure 9 with the results from Figure 8, it can be concluded
that they do not agree. Namely, on the basis of Figure 9, the sensitivity is expected to
decrease with the mean X-ray energy in considered range from 32.57 to 56.70 keV. The
reason for this discrepancy between the results from Figures 8 and 9 may lie in the fact that
either (µme(E))Si coefficients for silicon are not suitable to be used for SiO2 or/and the mean
energy is not a true indicator of the X-ray beam.
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Another characteristic of dosimeters, in addition to sensitivity, is fading, f. This shows
the recovery of the transistor threshold voltage after irradiation, during annealing at room
temperature without gate polarization (so-called spontaneous annealing, SA). The fading
can be found as [34]

f =
VT(0) − VT(t)
VT(0) − VT0

=
∆VT(0)− ∆VT(t)

∆VT(0)
, (11)

where VT(0) is the threshold voltage after irradiation, i.e., at the beginning of SA; VT(t) is
the threshold voltage during SA; VT0 is the threshold voltage before irradiation; ∆VT(0)
is the threshold voltage shift after irradiation, i.e., at the beginning of SA; and ∆VT(t) is
the threshold voltage shift during SA. During SA after gamma irradiation, ∆VT(t) usually
decreases, which gives the positive fading that increases [34]. Otherwise, ∆VT(t) can also
increase (reverse annealing), giving the negative fading. Figure 10 shows that the obtained
fading is negative for all samples, which is opposite to the case of gamma radiation.
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Looking at Figures 3 and 10, it cannot be concluded which transistor has the best dosi-
metric characteristics. Since the sensitivity and fading are the only dosimetric parameters, we
introduce a new dosimetric parameter, Golden Ratio, GR, that connects these two parameters:

GR =
S

f (tmax)
, (12)

where S is the sensitivity and f (tmax) is the fading at the last point of SA (in our case,
tmax ≈ 3500 h, i.e., about 5 months). The higher GR represents better dosimetric charac-
teristics of the transistor that should have a large S and a small f (GR should be as high
as possible). This means that GR can be used as a good parameter to compare different
transistors or to examine the effect of operating conditions (e.g., as in our case, different
gate voltages). The GR is displayed in Figure 11, showing that the highest GR (the best
dosimetric characteristic) is for RQR8 and VG,rad = 12 and 15 V.
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4. Conclusions

In this case study, the possibility of using commercial p-channel power vertical double-
diffused metal-oxide-semiconductor field-effect transistors (VDMOSFETs) as X-ray sensors
is investigated. This is important because VDMOSFETs are potentially suitable for radiation
dosimetry because they have a relatively thick oxide. The results show that the ∆VT = f (Kair)
dependence of threshold voltage shift, ∆VT, on air kerma, Kair, is linear up to the used air
kerma of 50 Gy for all used gate polarizations. The r-square (r2) correlation coefficients
of linear regression are higher than 0.99 for all cases. The fitting of dependence of the
sensitivity, S, on the gate polarization, VG,irr, applied during irradiation and using the
proposed equation is good. The density of FTs, ∆Nft, is the highest for RQR8 but the
lowest for the RQR3 beam. The density of STs, ∆Nst, does not show any clear dependence
on VG,irr as ∆Nft. ∆Nft is two times higher than ∆Nst, having a more dominant effect on
∆VT than ∆Nst. However, the effect of STs on ∆VT is more significant than in the case
of gamma-radiation, where ∆Nft is usually more than five times higher than ∆Nst. The
mass energy-absorption coefficients for silicon-dioxide, (µme(E))SiO2, have not been found
in the literature, and the mass energy-absorption coefficients for silicon, (µme(E))Si, are used
for ∆Nft on Kair dependence explanation. However, there is a discrepancy between the
experimental results and theoretical predictions. As a consequence, either the (µme(E))Si
coefficients for silicon are not suitable to be used for SiO2 and/or the mean energy is not
a proper indicator of the X-ray beam. All transistors show the negative fading during
spontaneous annealing, which is not the case with gamma-radiation. The newly proposed
dosimetry parameter, called the Golden Ratio, GR, is a very useful tool for comparing
different dosimeter conditions.

Author Contributions: Conceptualization, G.S.R.; validation, G.S.R., S.D.I.; A.J.P., and M.S.A.; inves-
tigation, G.S.R., S.V., A.S.J., S.D. and S.S.; writing—original draft preparation, G.S.R. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the European Union’s Horizon 2020 research and innova-
tion programme under grant agreement No. 857558, and the Ministry of Education, Science, and
Technological Development of the Republic of Serbia under the project No. 43011.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Electronics 2022, 11, 918 11 of 12

References
1. Holmes-Siedle, A. The space-charge dosimeter: General principles of a new method of radiation detection. Nucl. Instrum. Methods

1974, 121, 169–179. [CrossRef]
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